NIST solving a mystery among electrons

November 08, 2002

When it comes to sleuthing in science, few are better than the intrepid investigators at the National Institute of Standards and Technology (NIST). For example, take the "Case of the Stray Electrons."

NIST researchers have created nanoscale devices that manipulate electrons in order to count them one at a time. Such counting is critical to the development of new fundamental electrical standards. When two electrons are bound in pairs (called Cooper pairs) in a superconductor, they can be manipulated much faster, providing larger currents that can be measured more accurately. Manipulation of Cooper pairs also is important in several schemes to develop quantum computers. Past attempts at manipulation, however, have been thwarted by the existence of a small number of unpaired electrons rambling around in the superconducting state. Avoiding these unpaired electrons is the mystery that NIST is now helping solve.

NIST researchers have uncovered an important clue by showing that a previously unappreciated factor has a strong effect on the number of unpaired electrons in Cooper pair devices. Electron counting devices are made from two layers of aluminum, where the strengths of the bonds pairing electrons in each layer can be different. This slight difference originally was thought to be unimportant. However, a study of more than a dozen devices in which this difference was varied in a controlled way and independently measured in each device, shows the difference does affect device performance directly.
-end-


National Institute of Standards and Technology (NIST)

Related Electrons Articles from Brightsurf:

One-way street for electrons
An international team of physicists, led by researchers of the Universities of Oldenburg and Bremen, Germany, has recorded an ultrafast film of the directed energy transport between neighbouring molecules in a nanomaterial.

Mystery solved: a 'New Kind of Electrons'
Why do certain materials emit electrons with a very specific energy?

Sticky electrons: When repulsion turns into attraction
Scientists in Vienna explain what happens at a strange 'border line' in materials science: Under certain conditions, materials change from well-known behaviour to different, partly unexplained phenomena.

Self-imaging of a molecule by its own electrons
Researchers at the Max Born Institute (MBI) have shown that high-resolution movies of molecular dynamics can be recorded using electrons ejected from the molecule by an intense laser field.

Electrons in the fast lane
Microscopic structures could further improve perovskite solar cells

Laser takes pictures of electrons in crystals
Microscopes of visible light allow to see tiny objects as living cells and their interior.

Plasma electrons can be used to produce metallic films
Computers, mobile phones and all other electronic devices contain thousands of transistors, linked together by thin films of metal.

Flatter graphene, faster electrons
Scientists from the Swiss Nanoscience Institute and the Department of Physics at the University of Basel developed a technique to flatten corrugations in graphene layers.

Researchers develop one-way street for electrons
The work has shown that these electron ratchets create geometric diodes that operate at room temperature and may unlock unprecedented abilities in the illusive terahertz regime.

Photons and electrons one on one
The dynamics of electrons changes ever so slightly on each interaction with a photon.

Read More: Electrons News and Electrons Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.