# Fingerprints in the sky explained

November 08, 2004

Today, a group of physicists published the most compact and elegant explanation of one of nature's simplest phenomena: the way light behaves in the sky above us. This research appears today (Tuesday, 9th November) in the New Journal of Physics, published jointly by the Institute of Physics and Deutsche Physikalische Gesellschaft (German Physical Society).

Michael Berry and Mark Dennis from the University of Bristol, in collaboration with Raymond Lee of the US Naval Academy, have successfully predicted the patterns of polarisation of skylight, explained in broad outline by Lord Rayleigh in 1871, using elliptic integrals - a type of mathematics with deep geometrical roots, often described as "beautiful".

The blue sky seen through polaroid sunglasses gets darker and brighter as the glasses are rotated. This reveals something almost invisible to our unaided eyes: daylight is polarized light. This means that the light waves vibrate differently in different directions. The effect is strongest at right angles to the sun, and weaker elsewhere. It creates patterns in the sky that look similar to the ridges in human fingerprints and are used by many species of birds and flying insects as an aid to navigation.

A striking feature of the pattern is a pair of points near the sun where the light is not polarized at all (this point is a singularity and the pattern breaks down here). Although they have been studied for nearly two centuries, no one attempted to construct a model using the most obvious feature - the singularities - until now.

Sir Michael Berry said: "We wondered: what if you start with the singularities and write the simplest description of polarisation that puts the singularities in the right places? We found that this gives a remarkably good fit to the observational data, and predicts the pattern across the whole sky."

"This is beautiful mathematics in the sky. Using elliptic integrals, we've been able to replace pages and pages of formulae with one very simple solution that predicts the pattern extremely well"

"After almost 200 years there's now a way of understanding this natural phenomenon which is very different from previous models, but utterly natural. It's a modern theme of physics to study things by looking at their singularities - to think about them geometrically."

In order to test their theory, co-author Raymond Lee took four different polarized photographs of each of two clear-sky cases at the United States Naval Academy in Annapolis, Maryland, using a Nikon digital camera with a specially converted fisheye lens. When they compared these detailed observations to the pattern predicted by their model, they found that the fit was very good, indicating that the arrangement of the singularities could be vital in shaping the overall "fingerprint in the sky".

Many scientists and mathematicians believe that simple, concise explanations of natural phenomena are better or closer to some underlying truth than more complex ones. Professor Marcus du Sautoy, from the Mathematical Institute at the University of Oxford, said: "Having a sense of beauty and aesthetics is an important part of being a scientist. Nature seems to be a believer in Occam's Razor: given a choice between something messy or a beautiful solution, Nature invariably goes for beauty. This is why those scientists with an eye for aesthetics are often better equipped for discovering the way Nature works. We might find a complicated ugly solution but that is probably a sign that we haven't yet found the best explanation. The fact that there is so much beauty at the heart of Nature is what gives scientists a constant sense of wonder and excitement about their subject." PLEASE MENTION NEW JOURNAL OF PHYSICS AS THE SOURCE OF THIS ARTICLE, PUBLISHED BY THE INSTITUTE OF PHYSICS. IF PUBLISHING ONLINE PLEASE CARRY A HYPERLINK TO: http://www.njp.org.
-end-
Notes to editors:

1. For further information, pictures or illustrations, contact: David Reid, press officer, Institute of Physics, Tel: 00-44-207-470-4815, Mobile: 0-794-632-1473, E-mail: david.reid@iop.org.

2. The paper 'Polarization singularities in the clear sky' by MV Berry, MR Dennis, and R L Lee will be published online on Tuesday 9th November 2004 in the New Journal of Physics (http://www.njp.org) Vol. 6.The paper can be downloaded free of charge from 9th November from http://stacks.iop.org/1367-2630/6/162.

3. The Institute of Physics is a leading international professional body and learned society with over 37,000 members, which promotes the advancement and dissemination of a knowledge of and education in the science of physics, pure and applied. It has a world-wide membership and is a major international player in:

- scientific publishing and electronic dissemination of physics;

- setting professional standards for physicists and awarding professional qualifications;

- promoting physics through scientific conferences, education and science policy advice.

The Institute is a member of the Science Council, and a nominated body of the Engineering Council. The Institute works in collaboration with national physical societies and plays an important role in transnational societies such as the European Physical Society and represents British and Irish physicists in international organisations. In Great Britain and Ireland the Institute is active in providing support for physicists in all professions and careers, encouraging physics research and its applications, providing support for physics in schools, colleges and universities, influencing government and informing public debate.

IOP Publishing

## Related Physics Articles from Brightsurf:

Helium, a little atom for big physics
Helium is the simplest multi-body atom. Its energy levels can be calculated with extremely high precision only relying on a few fundamental physical constants and the quantum electrodynamics (QED) theory.

Hyperbolic metamaterials exhibit 2T physics
According to Igor Smolyaninov of the University of Maryland, ''One of the more unusual applications of metamaterials was a theoretical proposal to construct a physical system that would exhibit two-time physics behavior on small scales.''

Challenges and opportunities for women in physics
Women in the United States hold fewer than 25% of bachelor's degrees, 20% of doctoral degrees and 19% of faculty positions in physics.

Indeterminist physics for an open world
Classical physics is characterized by the equations describing the world.

Leptons help in tracking new physics
Electrons with 'colleagues' -- other leptons - are one of many products of collisions observed in the LHCb experiment at the Large Hadron Collider.

Has physics ever been deterministic?
Researchers from the Austrian Academy of Sciences, the University of Vienna and the University of Geneva, have proposed a new interpretation of classical physics without real numbers.

Twisted physics
A new study in the journal Nature shows that superconductivity in bilayer graphene can be turned on or off with a small voltage change, increasing its usefulness for electronic devices.

Physics vs. asthma
A research team from the MIPT Center for Molecular Mechanisms of Aging and Age-Related Diseases has collaborated with colleagues from the U.S., Canada, France, and Germany to determine the spatial structure of the CysLT1 receptor.

2D topological physics from shaking a 1D wire
Published in Physical Review X, this new study propose a realistic scheme to observe a 'cold-atomic quantum Hall effect.'

Helping physics teachers who don't know physics
A shortage of high school physics teachers has led to teachers with little-to-no training taking over physics classrooms, reports show.

Read More: Physics News and Physics Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.