Why our shifty eyes don't drive us crazy

November 08, 2006

Our eyes are constantly making saccades, or little jumps. Yet the world appears to us as a smooth whole. Somehow, the brain's visual system "knows" where the eyes are about to move and is able to adjust for that movement. In a paper published online this week in Nature, researchers at the University of Pittsburgh and the National Eye Institute (NEI) for the first time provide a circuit-level explanation as to why.

"This is a classic problem in neuroscience," says Marc Sommer, assistant professor of neuroscience at Pitt, who coauthored the paper with Robert Wurtz, senior investigator at NEI, one of the National Institutes of Health. "People have been searching for a circuit to accomplish this stability for the last 50 years, and we think we've made good progress with this study."

In 1950, Nobel laureate Roger Sperry hypothesized that when the brain commands the eyes to move, it also sends a corollary discharge, or internal copy, of that command to the visual system. Sommer and Wurtz showed in a 2002 Science paper that a pathway from brainstem to frontal cortex conveys a corollary discharge signal in the brains of monkeys. They suggested that this pathway might cause visual neurons of the cortex to suddenly shift their receptive field--their window on the world--just before a saccade. Such neurons with shifting receptive fields had been discovered by Pitt Professor of Neuroscience Carol Colby and colleagues in 1992.

In their current paper, which will be published in the Nov. 16 print edition of Nature, Sommer and Wurtz completed the circuit. They showed that the receptive fields in cortex are shifted because of the corollary discharge from the brainstem. To do this, they exploited the fact that the signals are relayed via the thalamus, a crucial intermediary. By knocking out the relay neurons, they interrupted the pathway. They found that receptive field shifts were curtailed by more than half.

A similar circuit is likely to exist in human brains, the researchers say. With this study, Sommer and Wurtz also provide a framework for studying corollary discharge in other sensory systems, such as hearing: Even when you move your head around, you still hear sounds around you as coming from the same place.

In future studies, Sommer and his graduate students at Pitt will perform the first direct test of the visual stability hypothesis. To determine whether shifting receptive fields are responsible for visual stability, the shifts will be disrupted in monkeys trained to detect visual motion. The monkeys could then report whether their world appears to be moving around abnormally as eye movements are made.
-end-
This research was supported by the NEI.

University of Pittsburgh

Related Neurons Articles from Brightsurf:

Paying attention to the neurons behind our alertness
The neurons of layer 6 - the deepest layer of the cortex - were examined by researchers from the Okinawa Institute of Science and Technology Graduate University to uncover how they react to sensory stimulation in different behavioral states.

Trying to listen to the signal from neurons
Toyohashi University of Technology has developed a coaxial cable-inspired needle-electrode.

A mechanical way to stimulate neurons
Magnetic nanodiscs can be activated by an external magnetic field, providing a research tool for studying neural responses.

Extraordinary regeneration of neurons in zebrafish
Biologists from the University of Bayreuth have discovered a uniquely rapid form of regeneration in injured neurons and their function in the central nervous system of zebrafish.

Dopamine neurons mull over your options
Researchers at the University of Tsukuba have found that dopamine neurons in the brain can represent the decision-making process when making economic choices.

Neurons thrive even when malnourished
When animal, insect or human embryos grow in a malnourished environment, their developing nervous systems get first pick of any available nutrients so that new neurons can be made.

The first 3D map of the heart's neurons
An interdisciplinary research team establishes a new technological pipeline to build a 3D map of the neurons in the heart, revealing foundational insight into their role in heart attacks and other cardiac conditions.

Mapping the neurons of the rat heart in 3D
A team of researchers has developed a virtual 3D heart, digitally showcasing the heart's unique network of neurons for the first time.

How to put neurons into cages
Football-shaped microscale cages have been created using special laser technologies.

A molecule that directs neurons
A research team coordinated by the University of Trento studied a mass of brain cells, the habenula, linked to disorders like autism, schizophrenia and depression.

Read More: Neurons News and Neurons Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.