Researchers identify unusual molecular switch for common form of advanced breast cancer

November 08, 2007

New evidence demonstrates that a novel molecular switch is involved in the development of a common form of advanced breast cancer, known as locally advanced breast cancer. The research, published by Cell Press in the November 9, 2007 issue of Molecular Cell, provides an exciting paradigm shift in the understanding of a key event in breast cancer development and presents new therapeutic opportunities for this deadly disease.

Locally advanced breast cancers are typically large tumors that, remarkably, have rarely spread to form additional tumors in distant sites in the body when they are discovered. However, locally advanced breast cancer patients often have a high level of treatment failure as the disease is often detected at an advanced stage. Previous work has shown that for large tumors to progress they must develop their own blood supply through a process known as tumor angiogenesis. Angiogenesis is often triggered as the expanding tumor cells move away from the existing blood supply and are deprived of oxygen, a condition known as hypoxia.

The ability of tumors to develop their own vasculature limits their growth and is regulated at different levels of genetic control. Now, a research study led by Drs. Robert J. Schneider and Silvia C. Formenti of New York University School of Medicine presents new evidence demonstrating how an unorthodox second pathway in protein synthesis plays a key role in controlling the translation of genetic messages (mRNAs) for factors that orchestrate angiogenesis, the tumor response to hypoxia and progression of tumors to form large locally advanced breast cancers. "Our study shows that an unusual molecular switch occurs in the machinery that carries out synthesis of proteins that are essential for angiogenesis and tumor progression," explains Dr. Schneider.

Drs. Schneider, Formenti and colleagues demonstrate that two factors involved in protein synthesis, 4E-BP1 and eIF4G, are strongly over-expressed in the majority of human large advanced breast tumors. Using breast cancer cells and animal tumor models, the researchers observed that elevated levels of 4E-BP1 trigger hypoxia inhibition of conventional protein synthesis in tumor cells, and with eIF4G, then increases the selective translation of specific mRNAs that promote tumor survival and angiogenesis, thereby functioning as a hypoxia controlled switch for tumor growth and survival.

These results present a entirely new understanding of the control of breast cancer angiogenesis that places the regulation of protein synthesis as a key event in malignant breast cancer. "This research opens new avenues for the development of targeted approaches in the treatment of one of the most common lethal forms of breast cancer worldwide", says Dr. Formenti. The work was funded by the Breast Cancer Research Foundation and the Department of Defense Breast Cancer Research Program.
-end-


Cell Press

Related Tumor Cells Articles from Brightsurf:

A more sensitive way to detect circulating tumor cells
Breast cancer is the most frequently diagnosed cancer in women, and metastasis from the breast to other areas of the body is the leading cause of death in these patients.

Cancer researchers train white blood cells to attacks tumor cells
Scientists at the National Center for Tumor Diseases Dresden (NCT/UCC) and Dresden University Medicine, together with an international team of researchers, were able to demonstrate that certain white blood cells, so-called neutrophil granulocytes, can potentially - after completing a special training program -- be utilized for the treatment of tumors.

How to prevent the spread of tumor cells via the lymph vessels
Scientists from the German Cancer Research Center and the Mannheim Medical Faculty of the University of Heidelberg identified a new way to block the dangerous spread of tumor cells via lymphatic vessels.

The CNIO reprograms CRISPR system in mice to eliminate tumor cells without affecting healthy cells
CNIO researchers destroyed Ewing's sarcoma and chronic myeloid leukaemia tumor cells by using CRISPR to cut out the fusion genes that cause them.

Feeding off fusion or the immortalization of tumor cells
Despite all recent progress, cancer remains one of the deadliest human diseases.

How do tumor cells divide in the crowd?
Scientists led by Dr. Elisabeth Fischer-Friedrich, group leader at the Excellence Cluster Physics of Life (PoL) and the Biotechnology Center TU Dresden (BIOTEC) studied how cancer cells are able to divide in a crowded tumor tissue and connected it to the hallmark of cancer progression and metastasis, the epithelial-mesenchymal transition (EMT).

How tumor cells evade the immune defense
Scientists are increasingly trying to use the body's own immune system to fight cancer.

Engineered immune cells recognize, attack human and mouse solid-tumor cancer cells
CAR-T therapy has been used successfully in patients with blood cancers such as lymphoma and leukemia.

New pathway to attack tumor cells identified
A study led by the Institut de Neurociències (INc-UAB) describes a new strategy to tackle cancer, based on inducing a potent stress in tumor causing cell destruction by autophagy.

Nutrient deficiency in tumor cells attracts cells that suppress the immune system
A study led by IDIBELL researchers and published this week in the American journal PNAS shows that, by depriving tumor cells of glucose, they release a large number of signaling molecules.

Read More: Tumor Cells News and Tumor Cells Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.