Differences in human and Neanderthal brains set in just after birth

November 08, 2010

The brains of newborn humans and Neanderthals are about the same size and appear rather similar overall. It's mainly after birth, and specifically in the first year of life, that the differences between our brains and those of our extinct relatives really take shape, according to a report published in the Nov. 9 issue of Current Biology, a Cell Press publication.

The findings are based on comparisons of virtual imprints of the developing brain and surrounding structures (known as endocasts) derived from the skulls of modern and fossilized humans, including that of a newborn Neanderthal.

Philipp Gunz of the Max Planck Institute for Evolutionary Anthropology explained that the differences researchers observe in early brain development likely reflect changes in the underlying brain circuitry. It is that internal organization of the brain that matters most for cognitive ability.

"In modern humans, the connections between diverse brain regions that are established in the first years of life are important for higher-order social, emotional, and communication functions," Gunz said. "It is therefore unlikely that Neanderthals saw the world as we do."

Whether cognitive differences exist between modern humans and Neanderthals is the subject of contentious disputes in anthropology and archaeology, he said. Because the range of brain sizes in Neanderthals overlaps with humans, many researchers had assumed that the cognitive capabilities of the two species were similar. The new findings challenge that notion.

In fact, the elongated overall shape of the braincase hasn't changed much in the course of more than two million years of human evolution, despite a big increase in endocranium volume. It is the globular braincases of modern humans that distinguish our own species from our closest fossil relatives and ancestors. The new results show that, at the time of birth, both Neanderthals and modern humans have elongated braincases, but only modern human endocasts change to a more globular shape in the first year of life.

"The distinct globular braincase shape of adult humans is therefore largely the result of an early brain development phase that is absent from Neanderthals," Gunz said.

The research team had earlier found that the developmental patterns of chimpanzee and human brains are remarkably similar after the first year of life but differ markedly immediately after birth. The new findings therefore show that the "globularization phase" of brain development distinguishes modern humans not only from chimpanzees, but also from Neanderthals.

This new view on human brain development might shed light on the results of a recent comparison of Neanderthal and modern human genomes, according to the researchers.

"The uniquely modern pattern of early brain development is particularly interesting in the light of the recent breakthroughs in the Neanderthal genome project, which identified genes relevant to cognition that are derived in living humans," the researchers wrote. "We speculate that a shift away from the ancestral pattern of brain development occurring in early Homo sapiens underlies brain reorganization and that the associated cognitive differences made this growth pattern a target for positive selection in modern humans."
-end-


Cell Press

Related Brain Articles from Brightsurf:

Glioblastoma nanomedicine crosses into brain in mice, eradicates recurring brain cancer
A new synthetic protein nanoparticle capable of slipping past the nearly impermeable blood-brain barrier in mice could deliver cancer-killing drugs directly to malignant brain tumors, new research from the University of Michigan shows.

Children with asymptomatic brain bleeds as newborns show normal brain development at age 2
A study by UNC researchers finds that neurodevelopmental scores and gray matter volumes at age two years did not differ between children who had MRI-confirmed asymptomatic subdural hemorrhages when they were neonates, compared to children with no history of subdural hemorrhage.

New model of human brain 'conversations' could inform research on brain disease, cognition
A team of Indiana University neuroscientists has built a new model of human brain networks that sheds light on how the brain functions.

Human brain size gene triggers bigger brain in monkeys
Dresden and Japanese researchers show that a human-specific gene causes a larger neocortex in the common marmoset, a non-human primate.

Unique insight into development of the human brain: Model of the early embryonic brain
Stem cell researchers from the University of Copenhagen have designed a model of an early embryonic brain.

An optical brain-to-brain interface supports information exchange for locomotion control
Chinese researchers established an optical BtBI that supports rapid information transmission for precise locomotion control, thus providing a proof-of-principle demonstration of fast BtBI for real-time behavioral control.

Transplanting human nerve cells into a mouse brain reveals how they wire into brain circuits
A team of researchers led by Pierre Vanderhaeghen and Vincent Bonin (VIB-KU Leuven, Université libre de Bruxelles and NERF) showed how human nerve cells can develop at their own pace, and form highly precise connections with the surrounding mouse brain cells.

Brain scans reveal how the human brain compensates when one hemisphere is removed
Researchers studying six adults who had one of their brain hemispheres removed during childhood to reduce epileptic seizures found that the remaining half of the brain formed unusually strong connections between different functional brain networks, which potentially help the body to function as if the brain were intact.

Alcohol byproduct contributes to brain chemistry changes in specific brain regions
Study of mouse models provides clear implications for new targets to treat alcohol use disorder and fetal alcohol syndrome.

Scientists predict the areas of the brain to stimulate transitions between different brain states
Using a computer model of the brain, Gustavo Deco, director of the Center for Brain and Cognition, and Josephine Cruzat, a member of his team, together with a group of international collaborators, have developed an innovative method published in Proceedings of the National Academy of Sciences on Sept.

Read More: Brain News and Brain Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.