Future wind turbines go offshore -- deep and floating

November 08, 2010

DeepWind was launched October 1st 2010, and Risø DTU is coordinating the consortium of 12 international members.

"Our objective is to develop more cost-effective MW wind turbines through dedicated technology rather than advancing existing concepts that are based on onshore technology being transported to the sea environment. Offshore wind energy today is twice as expensive as onshore technologies. That means that there is plenty of room for improvement," says DeepWind Project Manager Uwe Schmidt Paulsen, Risø DTU.

Studies show that for sea depths exceeding 30-60m, floating structures are economically more feasible than present offshore technology based on piled, jack-up or gravity foundations. The cost of material and logistics used in these constructions is simply too high. Furthermore, floating wind turbines will open up the possibility of placing offshore wind turbine plants with excellent wind potential near large cities with a deep-water coastline in e.g. Europe, Asia and North America.

Wind turbines in deep water

DeepWind is the acronym for this new power generation concept and project. As explained by the Risø DTU scientists behind the concept, it combines a vertical-axis wind turbine, new blade technology, full power transmission and control system, combined with a rotating and floating offshore substructure (see picture).

The basis for the vertical-axis wind turbine is the well-explored Darrieus design. This provides a very simple MW turbine, but also contains challenges not least because of the long sub-sea support structure needed. The concept also includes a direct drive MW generator with its electronic control system at the bottom of the sub-sea shaft, together with the electrical power transmission cables. Combining the relevant technologies and designing the components properly, will positively re-address the issues of distribution of cost and the competitiveness of the concept compared to existing technology.

"The technology behind the proposed concept gives significant challenges and requires technological breakthroughs. We need explicit research in a wide area of different technology fields and materials. For example we foresee research in the dynamics of the system, pultruded blades with adequate material properties, sub-sea power generators and converters, turbine control and safety systems, wave and current loading on the rotating and floating shaft, and also the mooring and torque absorption system," explains Uwe Schmidt Paulsen.

One of the definite outcomes of this futuristic project will be the demonstration of a kW-sized wind turbine to be placed in open waters of Roskilde Fjord next to Risø DTU. In this phase, dedicated experiments will be carried out and simulation tools will be developed for design purposes. These will be used to design a 5 MW concept and evaluate the prospects of an up-scaled, future 20 MW turbine.

Collaboration between industry and research

Offshore wind energy has been identified by the European Union as a key power generation technology for renewable energy in the future, and Europe should lead the world technologically.

"DeepWind is a challenging and sound project. This project goes beyond a technology transfer from onshore vertical wind turbine generation and constitutes a radical upgrade of existing technologies and would constitute a real breakthrough in the energy sector", explains Risø DTU Director Henrik Bindslev.

DeepWind combines several research fields, in particular wind energy, the offshore environment and materials technology. In DeepWind these technologies are combined with recent deep sea offshore technologies and with advanced large-scale blade pultrusion technology in order to establish a new field of development. In this new field researchers and industry work in an international partnership between research institutions, industrial small and medium sized enterprises (SMEs), non-SME and end-users.
-end-
DeepWind

Funding 3 million Euro from EU FP7 Cooperation Work Programme: Energy, Topic ENERGY.2010.10.2-1: Future Emerging Technologies for Energy Applications (FET).

Partners

The consortium consists of: Risø DTU (Project Manager), DTU Mekanik (DK), TUDelft (NL), Institut for Energiteknik/Aalborg Universitet (DK), DHI (DK), MARINTEK (NO), SINTEF Energy Research (NO), Nenuphar SA (FR), Statoil (NO), Universita Degli Studi di Trento (IT), MARIN (NL), National Renewable Energy Laboratory (NREL) (US), and a major Danish wind turbine manufacturer.

Contact

For more information please contact Uwe Schmidt Paulsen +454677 5044 or email DeepWind@risoe.dtu.dk

Web site: http://www.DeepWind.eu

Risoe National Laboratory for Sustainable Energy, the Technical University of Denmark

Related Wind Turbines Articles from Brightsurf:

Supersized wind turbines generate clean energy--and surprising physics
As wind energy scales up, researchers study the fluid dynamics challenges.

Safe flight: New method detects onset of destructive oscillations in aircraft turbines
''Flutter'' is a complex oscillatory phenomenon that can destroy aircraft turbine blades and has historically been the cause of several plane accidents.

New system uses wind turbines to defend the national grid from power cuts
A 'smart' system that controls the storage and release of energy from wind turbines will reduce the risk of power cuts and support the increase of wind energy use world-wide, say researchers at the University of Birmingham.

Wind beneath their wings: Albatrosses fine-tuned to wind conditions
A new study of albatrosses has found that wind plays a bigger role in their decision to take flight than previously thought, and due to their differences in body size, males and females differ in their response to wind.

Designing lightweight glass for efficient cars, wind turbines
A new machine-learning algorithm for exploring lightweight, very stiff glass compositions can help design next-gen materials for more efficient vehicles and wind turbines.

Quadrupling turbines, US can meet 2030 wind-energy goals
The United States could generate 20% of its electricity from wind within 10 years, without requiring any additional land, according to Cornell University research published in Nature Scientific Reports.

Supporting structures of wind turbines contribute to wind farm blockage effect
Much about the aerodynamic effects of larger wind farms remains poorly understood.

Wind and water
Damaging rains from hurricanes can be more intense after winds begin to subside, say UC Santa Barbara scientists.

Silverswords may be gone with the wind
In a new study in the Ecological Society of America's journal Ecological Monographs, researchers seek to understand recent population declines of Haleakalā silverswords and identify conservation strategies for the future.

Computer models show clear advantages in new types of wind turbines
Researchers from Aarhus University and Durham University have modelled the fluid dynamics of multi-rotor wind turbines via high-resolution numerical simulations.

Read More: Wind Turbines News and Wind Turbines Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.