New DNA repair pathway

November 08, 2010

UC Davis researchers have found a new pathway for repairing DNA damaged by oxygen radicals. The results are published this week in the journal Proceedings of the National Academy of Sciences.

"This new inducible pathway gives cells greater capacity to repair oxidative damage," said Peter Beal, professor of chemistry at UC Davis and senior author of the paper.

As part of its inflammatory response, the body's immune system produces oxygen radicals, or reactive oxygen species, to kill bacteria, parasites or tumors. But chronic inflammation, for example in the gut, has been linked to cancer, said co-author Professor Sheila David, also of the Department of Chemistry.

Oxygen radicals are strongly linked to cancer and aging and are also formed during metabolism and upon exposure to environmental toxins and radiation. Understanding more about how this damage can be repaired could lead to a better understanding of the causes of some cancers.

Oxygen radicals can react with the four bases that make up the "letters" of DNA -- A, C, G and T -- so that the "spelling" of genes gets changed. The accumulation of spelling errors (called mutations) can lead to cancer.

David's laboratory studies an enzyme called NEIL1 that detects and repairs these aberrant or damaged bases before changes in the genome become permanent.

Beal's group works on RNA editing. The first step in turning a gene into a protein is to make a copy of the DNA in RNA. This messenger RNA is then translated into the chain of amino acids that makes up a protein. In some cases, this RNA is "edited" between the transcription from DNA and the translation into protein.

At a conference last year, Beal -- who happens to be David's husband -- spotted NEIL1 among a list of genes that had just been discovered to be subject to RNA editing, and passed the news on to David.

On investigation, they found that NEIL1's messenger RNA is edited by an enzyme called ADAR1. In that editing, one of the chains of amino acids that make up NEIL1 changes from lysine to arginine, causing a slight, but noticeable, change in the structure of the protein.

Using a cell line derived from nerve cells, the team found no editing of NEIL1 RNA in resting cells. But when the cells were treated with interferon, which is produced during inflammation and to fight off viruses, the cells started making ADAR1 and editing NEIL1.

"The interferon-treated cells had two forms of the NEIL1 protein, one with lysine and one with arginine," Beal said.

NEIL1 can fix a number of different damaged DNA bases that form when normal DNA bases are attacked by oxygen radicals. Beal and David found that the two different forms of NEIL1 had different abilities to act upon the damaged DNA bases: the basic, lysine version had a broader range but lower activity, while the edited, arginine form had higher activity but was effective against a more limited range of targets. That might give the cell more flexibility in responding to DNA damage.

Beal and David believe that the whole system works something like this: Inflammation creates oxygen radicals, which damage DNA, which is repaired by NEIL1. Inflammation also generates interferon, which induces ADAR1, which then edits NEIL1 to produce the more active, specific form to cope with more severe types of DNA base damage.
-end-
The other co-authors on the paper are Jongchan Yeo, Rena Goodman and Nicole Schirle, all graduate students in the Department of Chemistry. The work was supported by grants from the National Institute for General Medical Sciences and the National Cancer Institute, both parts of the National Institutes of Health.

University of California - Davis

Related Cancer Articles from Brightsurf:

New blood cancer treatment works by selectively interfering with cancer cell signalling
University of Alberta scientists have identified the mechanism of action behind a new type of precision cancer drug for blood cancers that is set for human trials, according to research published in Nature Communications.

UCI researchers uncover cancer cell vulnerabilities; may lead to better cancer therapies
A new University of California, Irvine-led study reveals a protein responsible for genetic changes resulting in a variety of cancers, may also be the key to more effective, targeted cancer therapy.

Breast cancer treatment costs highest among young women with metastic cancer
In a fight for their lives, young women, age 18-44, spend double the amount of older women to survive metastatic breast cancer, according to a large statewide study by the University of North Carolina at Chapel Hill.

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.

Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.

Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.

Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.

More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.

New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.

American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.

Read More: Cancer News and Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.