Pull with caution

November 08, 2012

As nanotechnology progresses, it becomes increasingly important to know in detail the dynamics of the nanoworld (the world at the scale of a millionth of a millimeter). What happens, for example, when we try to drive a polyelectrolyte (a long chain of electrically charged molecules, such as DNA) through a nanopore if knots cause the translocation process to jam? It's not a pointless question, because now a new DNA sequencing method to electrochemically analyze every single strand by driving it through a nanopore, is being developed. Since those strands tend to tangle up if they are very long, Angelo Rosa of the International School for Advanced Studies and his colleagues set out to study the dynamics of this translocation theoretically, by carrying out a simulation.

The model chosen by the scientists has shown that jamming is not caused by the mere presence of the knot, but by the relationship between friction and the force applied to drive the molecule into the gap."The result is not so obvious if compared to what happens at a macro level," explained Cristian Micheletti, researcher at SISSA and one of the authors of the paper published in Physical Review Letters. "Knots introduce an effective friction that increases with the applied force and pulls the polymer to the other side of the nanopore. Translocation is only halted above a threshold force".

"According to what we observed in the simulation, to avoid obstruction of the pore and halt of the translocation, the force applied should be controlled, without pulling too much" explained Rosa.

This study is just a first step. For quantitative details on this process (what this threshold is and how the force should be measured out to maximize the effectiveness of this sequencing method) more in-depth examinations will be needed both at the theoretical (the model developed by Rosa, Di Ventra and Micheletti is mesoscopic, not atomistic) and at the experimental level.

More in detail...

Nanoporesequencing is an innovative technique, an alternative to more traditional methods such as PCA. This method involves separating the two nucleobase strands which make up the double helix of the DNA and analyzing them one by one. Each strand is driven through a nanopore as the electric variations in the translocation are recorded. That is an electrochemical method: alterations in the electric field give information on the chemical composition of the molecule driven through the pore and the composition is thus reconstructed. Up to now this method has yielded good results with short DNA fragments, while difficulties have been encountered for longer ones, because of the knots. That's why studies such as Rosa, Di Ventra and Micheletti's are an important step to increase its efficiency.
-end-


International School of Advanced Studies (SISSA)

Related DNA Articles from Brightsurf:

A new twist on DNA origami
A team* of scientists from ASU and Shanghai Jiao Tong University (SJTU) led by Hao Yan, ASU's Milton Glick Professor in the School of Molecular Sciences, and director of the ASU Biodesign Institute's Center for Molecular Design and Biomimetics, has just announced the creation of a new type of meta-DNA structures that will open up the fields of optoelectronics (including information storage and encryption) as well as synthetic biology.

Solving a DNA mystery
''A watched pot never boils,'' as the saying goes, but that was not the case for UC Santa Barbara researchers watching a ''pot'' of liquids formed from DNA.

Junk DNA might be really, really useful for biocomputing
When you don't understand how things work, it's not unusual to think of them as just plain old junk.

Designing DNA from scratch: Engineering the functions of micrometer-sized DNA droplets
Scientists at Tokyo Institute of Technology (Tokyo Tech) have constructed ''DNA droplets'' comprising designed DNA nanostructures.

Does DNA in the water tell us how many fish are there?
Researchers have developed a new non-invasive method to count individual fish by measuring the concentration of environmental DNA in the water, which could be applied for quantitative monitoring of aquatic ecosystems.

Zigzag DNA
How the cell organizes DNA into tightly packed chromosomes. Nature publication by Delft University of Technology and EMBL Heidelberg.

Scientists now know what DNA's chaperone looks like
Researchers have discovered the structure of the FACT protein -- a mysterious protein central to the functioning of DNA.

DNA is like everything else: it's not what you have, but how you use it
A new paradigm for reading out genetic information in DNA is described by Dr.

A new spin on DNA
For decades, researchers have chased ways to study biological machines.

From face to DNA: New method aims to improve match between DNA sample and face database
Predicting what someone's face looks like based on a DNA sample remains a hard nut to crack for science.

Read More: DNA News and DNA Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.