What if the nanoworld slides

November 08, 2012

A study published by Andrea Vanossi, Nicola Manini and Erio Tosatti - three SISSA researchers - in PNAS (Proceedings of the National Academy of Sciences) provides a new tool to better understand how sliding friction works in nanotribology, through colloidal crystals.

By theoretically studying these systems of charged microparticles, researchers are able to analyze friction forces through molecular dynamics simulations with accuracy never experienced before.

"There are several and very concrete potentialities", stated Andrea Vanossi, one of the members of the research group. "Just think of the constant miniaturization of high-tech components and of all the different nanotechnology sectors: if we understand how friction works at these levels, we will be able to create even more effective molecular motors or functional microsystems".

Colloidals are part of our everyday life (e.g. milk, asphalt or smoke) and they differentiate according to the state of the dispersed and dispersing substance (liquid, solid or gaseous).

The simulations were performed by SISSA in collaboration with ICTP, the Department of Physics in Milan and the CNR-IOM Institute for Materials Manufacturing and they allowed understanding what happens when a colloidal monolayer slides against an optical reticle modifying some parameters such as surface corrugation, drift speed or contact geometry.

The research method is also something new. Before this simulation was performed, only some recent experiments carried out in Germany tried for the first time to describe the behaviour of individual particles of a colloid in friction conditions, but never in such a precise way.

More in detail, researchers also suggest a way to directly extract the energy lost in friction by using the sliding data of the colloid. "This study is innovative also because it will allow predicting the different regimes of static friction realized according to the density of colloids and the strength of the optical reticle", added Erio Tosatti, another member of the research group. "All this lets us assume that crystalline solid surfaces will act in a similar way. We have never been able to make such a hypothesis before".

This study will open the way to new systems to explore the complexity of similar events, maybe at a microscopic scale.
-end-


International School of Advanced Studies (SISSA)

Related Physics Articles from Brightsurf:

Helium, a little atom for big physics
Helium is the simplest multi-body atom. Its energy levels can be calculated with extremely high precision only relying on a few fundamental physical constants and the quantum electrodynamics (QED) theory.

Hyperbolic metamaterials exhibit 2T physics
According to Igor Smolyaninov of the University of Maryland, ''One of the more unusual applications of metamaterials was a theoretical proposal to construct a physical system that would exhibit two-time physics behavior on small scales.''

Challenges and opportunities for women in physics
Women in the United States hold fewer than 25% of bachelor's degrees, 20% of doctoral degrees and 19% of faculty positions in physics.

Indeterminist physics for an open world
Classical physics is characterized by the equations describing the world.

Leptons help in tracking new physics
Electrons with 'colleagues' -- other leptons - are one of many products of collisions observed in the LHCb experiment at the Large Hadron Collider.

Has physics ever been deterministic?
Researchers from the Austrian Academy of Sciences, the University of Vienna and the University of Geneva, have proposed a new interpretation of classical physics without real numbers.

Twisted physics
A new study in the journal Nature shows that superconductivity in bilayer graphene can be turned on or off with a small voltage change, increasing its usefulness for electronic devices.

Physics vs. asthma
A research team from the MIPT Center for Molecular Mechanisms of Aging and Age-Related Diseases has collaborated with colleagues from the U.S., Canada, France, and Germany to determine the spatial structure of the CysLT1 receptor.

2D topological physics from shaking a 1D wire
Published in Physical Review X, this new study propose a realistic scheme to observe a 'cold-atomic quantum Hall effect.'

Helping physics teachers who don't know physics
A shortage of high school physics teachers has led to teachers with little-to-no training taking over physics classrooms, reports show.

Read More: Physics News and Physics Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.