Learning who's the top dog: Study reveals how the brain stores information about social rank

November 08, 2012

Researchers supported by the Wellcome Trust have discovered that we use a different part of our brain to learn about social hierarchies than we do to learn ordinary information. The study provides clues as to how this information is stored in memory and also reveals that you can tell a lot about how good somebody is likely to be at judging social rank by looking at the structure of their brain.

Primates (and people) are remarkably good at ranking each other within social hierarchies, a survival technique that helps us to avoid conflict and select advantageous allies. However, we know surprisingly little about how the brain does this.

The team at the UCL Institute for Cognitive Neuroscience used brain imaging techniques to investigate this in twenty six healthy volunteers.

Participants were asked to play a simple science fiction computer game where they would be acting as future investors. In the first phase they were told they would first need to learn about which individuals have more power within a fictitious space mining company (the social hierarchy), and then which galaxies have more precious minerals (non-social information).

Whilst they were taking part in the experiments, the team used functional magnetic resonance imaging (fMRI) to monitor activity in their brains. Another MRI scan was also taken to look at their brain structure.

Their findings reveal a striking dissociation between the neural circuits used to learn social and non-social hierarchies. They observed increased neural activity in both the amygdala and the hippocampus when participants were learning about the hierarchy of executives within the fictitious space mining company. In contrast, when learning about the non-social hierarchy, relating to which galaxies had more mineral, only the hippocampus was recruited.

They also found that those who were better at learning the social hierarchy had an increased volume of grey matter in the amygdala compared with those less able.

Dr Dharshan Kumaran at the UCL Institute of Cognitive Neuroscience, who led the study, explains: "These findings are telling us that the amygdala is specifically involved in learning information about social rank based on experience and suggest that separate neural circuits are involved than for learning hierarchy information of a non-social nature."

This is the first time that researchers have looked at how rank within a social hierarchy is judged based on knowledge acquired through experience, rather than perceptual cues like visual appearance which are typically unreliable predictors of rank.

In a second phase of the experiment, the team also looked at how we recall information about social rank when we meet somebody again and their study reveals how this information is represented in the brain. They asked participants to place bids on investment projects based on the knowledge about rank they had acquired during the first phase of the experiment. This was played out in the game as a particular executive heading up a mission to harvest minerals from a galaxy.

They found evidence that social rank, but not non-social rank, is translated into neural activity in the amygdala in a linear fashion. As such, the level of activity in the amygdala was observed to increase according to the social rank of the person being encountered. This signal provides a potential mechanism by which individuals select advantageous coalition partners in the real world based on their rank.

Being able to interpret social rank is important for us to meet the challenging pressures of living in large social groups. Knowing where we fit into a social group determines how we behave towards different people. As well as giving new understanding of which brain circuits are involved in learning and storing this information, the findings reported in this study help to explain why some people are better at it than others.

The researchers are now keen to look at people with brain and developmental disorders to see how their ability to learn social hierarchies is affected.

The study is published today in the journal Neuron.
-end-


Wellcome Trust

Related Brain Articles from Brightsurf:

Glioblastoma nanomedicine crosses into brain in mice, eradicates recurring brain cancer
A new synthetic protein nanoparticle capable of slipping past the nearly impermeable blood-brain barrier in mice could deliver cancer-killing drugs directly to malignant brain tumors, new research from the University of Michigan shows.

Children with asymptomatic brain bleeds as newborns show normal brain development at age 2
A study by UNC researchers finds that neurodevelopmental scores and gray matter volumes at age two years did not differ between children who had MRI-confirmed asymptomatic subdural hemorrhages when they were neonates, compared to children with no history of subdural hemorrhage.

New model of human brain 'conversations' could inform research on brain disease, cognition
A team of Indiana University neuroscientists has built a new model of human brain networks that sheds light on how the brain functions.

Human brain size gene triggers bigger brain in monkeys
Dresden and Japanese researchers show that a human-specific gene causes a larger neocortex in the common marmoset, a non-human primate.

Unique insight into development of the human brain: Model of the early embryonic brain
Stem cell researchers from the University of Copenhagen have designed a model of an early embryonic brain.

An optical brain-to-brain interface supports information exchange for locomotion control
Chinese researchers established an optical BtBI that supports rapid information transmission for precise locomotion control, thus providing a proof-of-principle demonstration of fast BtBI for real-time behavioral control.

Transplanting human nerve cells into a mouse brain reveals how they wire into brain circuits
A team of researchers led by Pierre Vanderhaeghen and Vincent Bonin (VIB-KU Leuven, Université libre de Bruxelles and NERF) showed how human nerve cells can develop at their own pace, and form highly precise connections with the surrounding mouse brain cells.

Brain scans reveal how the human brain compensates when one hemisphere is removed
Researchers studying six adults who had one of their brain hemispheres removed during childhood to reduce epileptic seizures found that the remaining half of the brain formed unusually strong connections between different functional brain networks, which potentially help the body to function as if the brain were intact.

Alcohol byproduct contributes to brain chemistry changes in specific brain regions
Study of mouse models provides clear implications for new targets to treat alcohol use disorder and fetal alcohol syndrome.

Scientists predict the areas of the brain to stimulate transitions between different brain states
Using a computer model of the brain, Gustavo Deco, director of the Center for Brain and Cognition, and Josephine Cruzat, a member of his team, together with a group of international collaborators, have developed an innovative method published in Proceedings of the National Academy of Sciences on Sept.

Read More: Brain News and Brain Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.