Nav: Home

Massive 'lake' discovered under volcano that could unlock why and how volcanoes erupt

November 08, 2016

Scientists from the University of Bristol and partner universities in Germany, France, Canada and Wales, have discovered a huge magmatic lake, 15 kilometres below a dormant volcano in Bolivia, South America.

The body of water - which is dissolved into partially molten rock at a temperature of almost 1,000 degrees Celsius - is the equivalent to what is found in some of the world's giant freshwater lakes, such as Lake Superior.

The find has now led scientists to consider if similar bodies of water may be 'hiding' under other volcanoes and could help explain why and how volcanoes erupt.

Professor Jon Blundy, from the School of Earth Sciences, took part in an international multidisciplinary research project at Cerro Uturuncu volcano in the Bolivian Altiplano.

He said: "The Bolivian Altiplano has been the site of extensive volcanism over past 10 million years, although there are no currently active volcanoes there.

"The Altiplano is underlain by a large geophysical anomaly at depths of 15 km below the surface of the earth.

"This anomaly has a volume of one-and-a-half million cubic kilometres or more and is characterised by reduced seismic wave speeds and increased electrical conductivity. This indicates the presence of molten rock.

"The rock is not fully molten, but partially molten. Only about 10 to 20 percent of the rock is actually liquid; the rest is solid. The rock at these depths is at a temperature of about 970°C."

In order to characterise the partially molten region the team performed high temperature and pressure experiments at the University of Orléans in France.

This measured the electrical conductivity of the molten rock in the 'anomalous' region and concluded that there must be about eight to ten percent of water dissolved in the silicate melt.

Professor Blundy added: "This is a large value. It agrees with estimates made for the volcanic rocks of Uturuncu using high temperature and pressure experiments to match the chemical composition of crystals.

"Silicate melt can only dissolve water at high pressure; at lower pressure this water comes out of the solution and forms bubbles. Crucially - these bubbles can drive volcanic eruptions.

"The eight to ten percent of water dissolved in the massive anomaly region amounts to a total mass of water equivalent to what is found in some of the giant freshwater lakes of North America."

Professor Fabrice Gaillard at University of Orléans explained: "Ten per cent by weight of dissolved water means that there is one molecule of water for every three molecules of silicate. This is an extraordinarily large fraction of water, helping to explain why these silicate liquids are so electrically conductive."

The researchers hope that better understanding of how water can trigger volcanic eruptions can improve predictions of when it is going to erupt.
-end-


University of Bristol

Related Volcanoes Articles:

'Bulges' in volcanoes could be used to predict eruptions
A team of researchers from the University of Cambridge have developed a new way of measuring the pressure inside volcanoes, and found that it can be a reliable indicator of future eruptions.
Scientists discover how world's biggest volcanoes formed
A study led by The Australian National University has solved the 168-year-old mystery of how the world's biggest and most active volcanoes formed in Hawaii.
New research shows Ceres may have vanishing ice volcanoes
A recently discovered solitary ice volcano on the dwarf planet Ceres may have some hidden older siblings, say scientists who have tested a likely way such mountains of icy rock -- called cryovolcanoes -- might disappear over millions of years.
Climate change may prevent volcanoes from cooling the planet
New UBC research shows that climate change may impede the cooling effect of volcanic eruptions.
Massive 'lake' discovered under volcano that could unlock why and how volcanoes erupt
Scientists from the University of Bristol and partner universities in Germany, France, Canada and Wales, have discovered a huge magmatic lake, 15 km below a dormant volcano in Bolivia, South America.
One vent just isn't enough for some volcanoes
One vent just isn't enough for some volcanoes: the curious case of Mount Etna's wandering craters.
Ceres: The tiny world where volcanoes erupt ice
ASU scientist David Williams is investigating how volcanic activity driven by salty water has reshaped the face of Ceres, the biggest little world in the asteroid belt.
Magma-limestone interaction can trigger explosive volcanic eruptions -- and affect the global carbon cycle
In a new study researchers from Sweden and Italy show what happens when magma meets limestone on its way up to the surface.
Volcanoes get quiet before they erupt!
Until now, there has not been a way to forecast eruptions of restless volcanoes because of the constant seismic activity and gas and steam emissions.
Volcanoes tied to shifts in Earth's climate over millions of years
A new study in the April 22 edition of Science reveals that volcanic activity associated with the plate-tectonic movement of continents may be responsible for climatic shifts from hot to cold over tens and hundreds of millions of years throughout much of Earth's history.

Related Volcanoes Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Setbacks
Failure can feel lonely and final. But can we learn from failure, even reframe it, to feel more like a temporary setback? This hour, TED speakers on changing a crushing defeat into a stepping stone. Guests include entrepreneur Leticia Gasca, psychology professor Alison Ledgerwood, astronomer Phil Plait, former professional athlete Charly Haversat, and UPS training manager Jon Bowers.
Now Playing: Science for the People

#524 The Human Network
What does a network of humans look like and how does it work? How does information spread? How do decisions and opinions spread? What gets distorted as it moves through the network and why? This week we dig into the ins and outs of human networks with Matthew Jackson, Professor of Economics at Stanford University and author of the book "The Human Network: How Your Social Position Determines Your Power, Beliefs, and Behaviours".