Changing views of evolutionary factors at work on earliest mammals

November 08, 2016

AMHERST, Mass. - Using 3D-printed replicas of 200-million-year-old mammal teeth and polymers that mimic insect prey, scientists at the University of Massachusetts Amherst this week provide the first laboratory-tested evidence that the ability for teeth to damage prey is a more significant factor driving evolutionary changes in tooth shape than either bite force or the animal's energy expenditure.

This unexpected finding should change the way biologists view natural selection as it is studied through dental morphology, the authors say. Tooth shape is linked to diet and the biomechanics of feeding, and much of what is known about early mammalian evolution comes from their fossilized teeth, they point out. Details appear in the current online edition of the British Royal Society journal, Interface.

Evolutionary biology doctoral student Andrew John Conith and his advisor Elizabeth Dumont, with polymer scientists Alfred Crosby and graduate student Michael Imburgia, wanted to better understand how tooth shape influenced diet in early mammals. Dumont and Crosby are both members of the Center for Evolutionary Materials at UMass Amherst, where researchers apply biological thinking to engineering problems.

The team used 3D-printed replicas of 200-million-year-old molars in their tests to simulate a bite. The teeth came from two shrew-like early mammal species, the primitive Morganucodon and more advanced Kuehneotherium. Both species, considered exemplars of early mammal evolution, were underfoot when dinosaurs roamed the earth in the Triassic Period.

Conith says, "The big question here is why teeth look the way they do. Most of the work on early mammalian tooth evolution has been descriptions of what they look like and how they could potentially work as tools for biting and crushing insects. We took it one step further, to make these tools and test them. We merged two modern technologies and used 3D prints of teeth to 'bite' into polymer gels with a exoskeleton-like crust that accurately mimicked insects."

He adds, "Based on these experiments, we think the factor that natural selection worked on was the ability to break apart food, and that selection for maximum damage is the primary determinant of tooth shape."

Until now, most research has ignored damage in favor of investigating force and energy based on the assumption that selection favored animals that expend the least force and energy, Conith says. "But I think people will need to reconsider these typical parameters and now think more critically about damage. It's an important consideration. We haven't rewritten the book, but we have added a new chapter."

To imitate insect prey for experiments documenting bite force, energy efficiency and damage by Morganucodon and Kuehneotherium jaws, the researchers constructed gel-filled, candy bar-shaped rectangles coated with a polymer shell to mimic an insect's exoskeleton. Based on factors in the literature, they constructed two polymer "proxy insects," one hard- and one softer-shelled, and ran 10 experiments for each type using both Morganucodon and Kuehneotherium molar shapes.

They used a force-testing machine to bite the proxy insects between 3D-printed teeth replicas from an upper and lower jaw. The researchers measured the force, work done (energy) and damage inflicted to the gels. To assess damage they measured the cracks and fractures in the polymer coating from digital photographs following a biting trial.

The authors report that the more primitive Morganucodon model required less force and energy to fracture hard gels while Kuehneotherium required less force and energy to fracture soft gels. "More importantly, Kuehneotherium also inflicted more damage to both the hard and the soft gels. These results suggest that changes in tooth shape in some early mammals was driven primarily by selection for maximizing damage, and secondarily for maximizing biomechanical parameters such as force or energy," Conith and colleagues write.

He adds, "When we started this project we thought we'd only report the force and energy results, we never thought about damage. It wasn't until we actually saw the destruction Kuehneotherium could inflict on our model insects that we thought it would be interesting to measure. In science your general ideas may be correct, but the details can be so much more complex."
-end-


University of Massachusetts at Amherst

Related Polymer Articles from Brightsurf:

Impurities enhance polymer LED efficiencies
New research published in EPJ B reveals that the higher-than-expected efficiency of PLEDs can be reached through interactions between triplet excitons, and impurities embedded in their polymer layers.

Safety of bioabsorbable polymer against durable polymer DES in high-risk PCI patients
A novel study sought to reveal whether drug-eluting stents (DES) coated with bioabsorbable polymer (BP) presented a safety advantage without compromising efficacy compared to durable polymer (DP) formulations.

Polymer membranes could benefit from taking a dip
A new technique developed by a team including researchers from the US Department of Energy (DOE)'s Argonne National Laboratory makes atomic layer deposition possible on nearly any membrane.

New polymer material may help batteries become self-healing, recyclable
Lithium-ion batteries are notorious for developing internal electrical shorts that can ignite a battery's liquid electrolytes, leading to explosions and fires.

Researchers add order to polymer gels
Gel-like materials have a wide range of applications, especially in chemistry and medicine.

Bundlemers (new polymer units) could transform industries
From tires to clothes to shampoo, many ubiquitous products are made with polymers, large chain-like molecules made of smaller sub-units, called monomers, bonded together.

New synthetic polymer degradable under very mild acidic conditions
A new type of degradable synthetic polymer was prepared by Rh-catalyzed three-component polymerization of a bis(diazocarbonyl) compound, bis(1,3-diketone), and tetrahydrofuran.

New polymer tackles PFAS pollution
toxic polyfluorinated alkyl substances (PFAS) pollution -- commonly used in non-stick and protective coatings, lubricants and aviation fire-fighting foams -- can now be removed from the environment thanks to a new low-cost, safe and environmentally friendly polymer.

New polymer films conduct heat instead of trapping it
MIT engineers have flipped the picture of the standard polymer insulator, by fabricating thin polymer films that conduct heat -- an ability normally associated with metals.

Polymer reversibly glows white when stretched
Polymers that change their appearance in response to mechanical forces can warn of damage developing in a material before the stress causes structural failure.

Read More: Polymer News and Polymer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.