Better, bolder printing with silicon nanostructures

November 08, 2017

From textbooks to artwork to newspapers, printed items are a part of our everyday life. But the ink used in today's printers are limited in colors and resolution. Now in a new study in ACS' journal Nano Letters, scientists have found a way to expand the printable color spectrum with a novel nanostructure system.

The current color range for computers and printers is based on the sRGB (standard Red Green Blue) color space, which was developed in 1996 by Microsoft and Hewlett-Packard. But the hues in the sRGB system only encompass a subset of colors that the human eye can see. Researchers have been trying to develop a better system to surpass sRGB that would broaden the printable color spectrum while maintaining high resolution. For example, they have used metallic nanostructures for color printing, but this has resulted in either high-resolution images with less-rich colors, or images with vivid colors but lower resolution. Also, the use of metals like silver and gold would likely be too expensive for wide adoption. So researchers have turned to silicon because it has unique properties that might be optimal for expanding computer and printing colors at a lower price. But so far, silicon color systems have shown poor color saturation and range. So Joel Yang and colleagues wanted to design a novel silicon nanostructure that could potentially overcome these limitations and compete with the sRGB system.

The researchers tested differently sized silicon nanodisks, controlling how close the structures were to each other. Once they figured out the optimal disk sizes and distances between them, the team used the nanodisks to print an art piece on silicon coated with an anti-reflective layer consisting of silicon nitride. This anti-reflective coated substrate was important to more closely mimick the color range visible to the human eye. The researchers concluded that the silicon nanostructures expanded the range of printable colors by 121 percent, while maintaining both high color saturation and resolution. The scientists note that although their design still has some limitations that need to be addressed, it has achieved the largest color gamut for printing while maintaining a print resolution better than 40,000 dpi.
The authors acknowledge funding from the Agency for Science, Technology and Research (A*STAR), SERC and National Research Foundation.

The paper's abstract will be available on Nov. 8 at 8 a.m. Easter time here:

The American Chemical Society is a not-for-profit organization chartered by the U.S. Congress. ACS is the world's largest scientific society and a global leader in providing access to chemistry-related research through its multiple databases, peer-reviewed journals and scientific conferences. ACS does not conduct research, but publishes and publicizes peer-reviewed scientific studies. Its main offices are in Washington, D.C., and Columbus, Ohio.

To automatically receive news releases from the American Chemical Society, contact

Follow us: Twitter | Facebook

American Chemical Society

Related Silicon Articles from Brightsurf:

Single photons from a silicon chip
Quantum technology holds great promise: Quantum computers are expected to revolutionize database searches, AI systems, and computational simulations.

For solar boom, scrap silicon for this promising mineral
Cornell University engineers have found that photovoltaic wafers in solar panels with all-perovskite structures outperform photovoltaic cells made from state-of-the-art crystalline silicon, as well as perovskite-silicon tandem cells, which are stacked pancake-style cells that absorb light better.

Surprisingly strong and deformable silicon
Researchers at ETH have shown that tiny objects can be made from silicon that are much more deformable and stronger than previously thought.

A leap in using silicon for battery anodes
Scientists have come up with a novel way to use silicon as an energy storage ingredient.

Flexible thinking on silicon solar cells
Combining silicon with a highly elastic polymer backing produces solar cells that have record-breaking stretchability and high efficiency.

No storm in a teacup -- it's a cyclone on a silicon chip
University of Queensland researchers have combined quantum liquids and silicon-chip technology to study turbulence for the first time, opening the door to new navigation technologies and improved understanding of the turbulent dynamics of cyclones and other extreme weather.

Black silicon can help detect explosives
Scientists from Far Eastern Federal University (FEFU), Far Eastern Branch of the Russian Academy of Sciences, Swinburne University of Technology, and Melbourne Center for Nanofabrication developed an ultrasensitive detector based on black silicon.

2D antimony holds promise for post-silicon electronics
Researchers in the Cockrell School of Engineering are searching for alternative materials to silicon with semiconducting properties that could form the basis for an alternative chip.

Silicon technology boost with graphene and 2D materials
In a review published in Nature, ICFO researchers and collaborators report on the current state, challenges, opportunities of graphene and 2D material integration in Silicon technology.

Light and sound in silicon chips: The slower the better
Acoustics is a missing dimension in silicon chips because acoustics can complete specific tasks that are difficult to do with electronics and optics alone.

Read More: Silicon News and Silicon Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to