Nav: Home

Scientists are developing a compound for a pharmaceutical that stops convulsions

November 08, 2017

Scientists from RUDN University took an active part in the development of a chemical compound that would help to stop convulsions during epileptic seizures. The results of the study were published in Chirality.

Epilepsy is a chronic neuralgic disease which causes convulsive seizures in humans and other animals. The pathogenesis of this disease is paroxysmal - very strong, acute, repetitive - discharges in the nerve cells of the brain that cause convulsions. Anticonvulsants help to stop the epileptic fit. The drug itself is a powder that is dissolved in water and injected into a person who has such a seizure.

In order to obtain such a drug, scientists have developed a compound with a chirality - an asymmetric carbon atom (chiral center) which, with an absolutely identical chemical composition and similar structure, leads to a configuration incompatibility of the left and right forms of the molecule (a good analogy would be left and right hands). Thus, the nearest environment of the chiral center is a tetrahedron - a regular trigonal pyramid in the middle of which there is a chiral carbon atom and at its vertices there are substituents (atoms or groups of atoms replacing hydrogen atoms in hydrocarbon fragments) of various types. The chirality of such a "construction" is that all these four substituents are differently arranged in space relative to each other. In other words, if we isolate individual 3D models of these tetrahedra from the structure of the molecule and try to combine them, they will not coincide.

"One of the most important areas of our scientific research is chemicals that have potential biological activity. In this case, the studied compounds have a specific activity - they are anticonvulsants. This is a common property of compounds of this class, but in order for compounds to show these properties more efficiently, they must be chirally (optically) pure, that is, the asymmetric centers of all molecules in the total substance mass must be of the same configuration. The published paper is devoted to the method of separation of racemic mixtures which contain molecules with various absolute (R or S) configurations of chiral carbon atoms," said Victor Khrustalev, Doctor of Chemical Sciences, Head of the Department of Inorganic Chemistry of the Faculty of Physics and Mathematics and Natural Sciences of RUDN University.

Scientists synthesized and studied the structure of 3-ethyl-2-phenylpyrrolidin-2-one (EPP) showing anticonvulsant activity. The named compound can exist in three forms: as two chirally pure R / S stereoisomers and a racemate - a mixture of molecules with different R and S configurations of the asymmetric center.

All three described forms show biological activity to varying degrees. The authors found that the compound effectively helps to stop convulsions only when it is chirally pure, that is, it contains molecules of only one configuration: either R or S. It should be noted that when the compound is produced under normal conditions a racemate is always formed, which makes it difficult to use in medical practice.

In the course of the work scientists synthesized the compound with the desired chemical formula in the form of a racemate, which was confirmed by the methods of NMR and IR spectroscopy. Then, with the use of high-resolution liquid chromatography the authors divided the racemic mixture into optically pure stereoisomers. Thus, the researchers separated the necessary forms of a given chemical compound, which can later serve as a basis for a new drug. The scientists confirmed that there are molecules of only one configuration in the isolated forms after examining them by means of X-ray diffraction analysis.
The work was carried out in collaboration with scientists from the University of Houston (Houston, Texas, USA), Marquette University (Milwaukee, Wisconsin, USA) and New Mexico Highlands University (Las Vegas, New Mexico, USA).

RUDN University

Related Molecules Articles:

Water molecules are gold for nanocatalysis
Nanocatalysts made of gold nanoparticles dispersed on metal oxides are very promising for the industrial, selective oxidation of compounds, including alcohols, into valuable chemicals.
Water molecules dance in three
An international team of scientists has been able to shed new light on the properties of water at the molecular level.
How molecules self-assemble into superstructures
Most technical functional units are built bit by bit according to a well-designed construction plan.
Breaking down stubborn molecules
Seawater is more than just saltwater. The ocean is a veritable soup of chemicals.
Shaping the rings of molecules
Canadian chemists discover a natural process to control the shape of 'macrocycles,' molecules of large rings of atoms, for use in pharmaceuticals and electronics.
The mysterious movement of water molecules
Water is all around us and essential for life. Nevertheless, research into its behaviour at the atomic level -- above all how it interacts with surfaces -- is thin on the ground.
Spectroscopy: A fine sense for molecules
Scientists at the Laboratory for Attosecond Physics have developed a unique laser technology for the analysis of the molecular composition of biological samples.
Looking at the good vibes of molecules
Label-free dynamic detection of biomolecules is a major challenge in live-cell microscopy.
Colliding molecules and antiparticles
A study by Marcos Barp and Felipe Arretche from Brazil published in EPJ D shows a model of the interaction between positrons and simple molecules that is in good agreement with experimental results.
Discovery of periodic tables for molecules
Scientists at Tokyo Institute of Technology (Tokyo Tech) develop tables similar to the periodic table of elements but for molecules.
More Molecules News and Molecules Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at     You can read The Transition Integrity Project's report here.