Nav: Home

Exposure to chemical during pregnancy may cause health problems for offspring

November 08, 2017

A chemical called bisphenol A -- BPA -- used in plastic packaging and in the linings of food and beverage cans, may be passed from a mother to her offspring during pregnancy and cause changes in the gut bacteria of the offspring, according to an international team of researchers.

In a study on rabbits, the researchers observed that exposure to BPA during pregnancy caused chronic inflammation in the offspring's intestines and liver. The researchers also noted signs of increased gut permeability -- or leaky gut -- and a decrease in the diversity of gut bacteria and anti-inflammatory bacterial metabolites, such as short-chain fatty acids, said Jairam K.P. Vanamala, associate professor of food sciences, Penn State.

Leaky gut and decreased gut-bacteria diversity and metabolites are considered biomarkers -- or indicators -- of inflammation-related chronic diseases, he added.

"Obesity and inflammation-promoted chronic diseases like colon cancer and type 2 diabetes are increasing not just in America, but worldwide," said Vanamala. "We know that many types of cancers are inflammation-promoted, like colon cancer. But, we have not understood what causes inflammation in the intestine and liver. We have previously shown that food is a double-edge sword. Some foods can promote inflammation in the intestine, whereas bright-colored fruits and vegetables, like purple potatoes, can suppress intestinal inflammation. This study shows that we also need to think about the toxins in the environment."

The offspring were not directly exposed to BPA, but received exposure to the chemical from their mother through the placenta and in the milk. This exposure may lead to long-lasting health problems, according to the researchers.

"Even though the offspring are not directly exposed to BPA, the inflammation still persists for weeks," said Vanamala. "What we are seeing is that both intestine and liver tissues are damaged and we see that the gut diversity is low, the anti-inflammatory metabolites are low."

In the future, Vanamala said researchers may investigate how the influence of diet and environment during pregnancy could affect long-term health.

"What we are trying to understand is how beneficial compounds can favorably influence gut bacteria and, in turn, help fight chronic diseases, as well as how toxicants in the environment and in the food can negatively influence gut bacteria and, in turn, cause chronic disease," said Vanamala. "So now that we have seen this environmental toxicant-induced inflammation, we can study the beneficial anti-inflammatory foods, like the purple potato and others, in this human development model, and see how a mother's health and her levels of toxicants and beneficial compounds will influence the baby's susceptibility to chronic disease."

The researchers used rabbits because of their longer gestation period, which is similar to humans. Rodents have shorter gestation periods, according to Vanamala.

Government agencies, such as the Food and Drug Administration, have recently set limits on the use of BPA in some products. BPA is found in many consumer products, including the epoxy lining of metal food and beverage cans and plastic bottles. It is present in more than 90 percent of the U.S. population, suggesting widespread exposure, Vanamala said.

While the U.S. Environmental Protection Agency (EPA) offered a tolerable daily intake -- TDI -- of 50 micrograms of BPA per kilogram of body weight each day, new studies suggest that we are exposed to at least eight times that amount every day, said Vanamala, who is also a faculty member at the Penn State Hershey Cancer Institute.

According to Vanamala and collaborators, the mother rabbit was exposed to about 200 micrograms of BPA per kilogram of body weight each day from day 15 of gestation until 7 days after birth, and the offspring absorbed BPA via the placenta or milk during that time. The tissues of the offspring were examined at six weeks of age. They reported their findings in the journal mSystems, a publication of the American Society for Microbiology.

He also suggested that future research may investigate whether there is a relationship between a decrease in gut bacteria diversity and food allergies.

"When diversity of bacteria and metabolites is low, and inflammation develops, the immune system isn't trained as well," said Vanamala. "When the immune system isn't properly trained, our suspicion is that this might make people more susceptible to food allergies."
-end-
Researchers who worked with Vanamala include Lavanya Reddivari, assistant professor of plant science; Mary J. Kennett, professor of veterinary and biomedical sciences and director of the animal resource program, M.K. Kurundu Hewage, research technologist, all of Penn State; D.N. Rao Veermachaneni, professor of biomedical sciences, animal reproduction and biotechnology laboratory, and Jennifer Palmer, research associate, both of Colorado State University; William A. Walters, postdoctoral fellow, Max Planck Institute for Developmental Biology, Tubingen, Germany; Catherine Lozupone, assistant professor in biomedical informatics and personalized medicine, University of Colorado; Rohil Bhatnagar, graduate research assistant, Cornell University; Amnon Amir, former Knight Lab member, and Rob Knight, professor of pediatrics, with an additional appointment in computer science, both of the University of California.

The U.S. Department of Agriculture National Institute of Food and Agriculture and the Howard Hughes Medical Institute supported this work.

Penn State

Related Bacteria Articles:

Siblings can also differ from one another in bacteria
A research team from the University of Tübingen and the German Center for Infection Research (DZIF) is investigating how pathogens influence the immune response of their host with genetic variation.
How bacteria fertilize soya
Soya and clover have their very own fertiliser factories in their roots, where bacteria manufacture ammonium, which is crucial for plant growth.
Bacteria might help other bacteria to tolerate antibiotics better
A new paper by the Dynamical Systems Biology lab at UPF shows that the response by bacteria to antibiotics may depend on other species of bacteria they live with, in such a way that some bacteria may make others more tolerant to antibiotics.
Two-faced bacteria
The gut microbiome, which is a collection of numerous beneficial bacteria species, is key to our overall well-being and good health.
Microcensus in bacteria
Bacillus subtilis can determine proportions of different groups within a mixed population.
Right beneath the skin we all have the same bacteria
In the dermis skin layer, the same bacteria are found across age and gender.
Bacteria must be 'stressed out' to divide
Bacterial cell division is controlled by both enzymatic activity and mechanical forces, which work together to control its timing and location, a new study from EPFL finds.
How bees live with bacteria
More than 90 percent of all bee species are not organized in colonies, but fight their way through life alone.
The bacteria building your baby
Australian researchers have laid to rest a longstanding controversy: is the womb sterile?
Hopping bacteria
Scientists have long known that key models of bacterial movement in real-world conditions are flawed.
More Bacteria News and Bacteria Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Warped Reality
False information on the internet makes it harder and harder to know what's true, and the consequences have been devastating. This hour, TED speakers explore ideas around technology and deception. Guests include law professor Danielle Citron, journalist Andrew Marantz, and computer scientist Joy Buolamwini.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at Radiolab.org/donate.     You can read The Transition Integrity Project's report here.