Nav: Home

How chronic inflammation tips the balance of immune cells to promote liver cancer

November 08, 2017

Chronic inflammation is known to drive many cancers, especially liver cancer. Researchers have long thought that's because inflammation directly affects cancer cells, stimulating their division and protecting them from cell death. But University of California San Diego School of Medicine researchers have now found that chronic liver inflammation also promotes cancer by suppressing immunosurveillance -- a natural defense mechanism in which it's thought the immune system suppresses cancer development.

The study is published November 8 in Nature.

"Recent successes in cancer immunotherapy -- in the form of immune checkpoint inhibitors and adoptive T cell transfer -- demonstrate how activated immune cells can eradicate tumors, but until now we didn't fully appreciate immunosurveillance or the role of adaptive immunity in tumor formation," said senior author Michael Karin, PhD, Distinguished Professor of Pharmacology and Pathology at UC San Diego School of Medicine. "This study provides one of the strongest and most direct demonstrations that adaptive immunity actively prevents liver cancer." Karin led the study with first author Shabnam Shalapour, PhD, an assistant professor in his group.

The team used a new mouse model of liver cancer in this study. Rather than artificially triggering cancer by engineering genetic mutations, this model more closely mimics human liver cancer in that tumors develop as a natural consequence of non-alcoholic steatohepatitis (NASH), a chronic metabolic disorder that causes liver damage, fibrosis and numerous cell mutations. NASH is associated with obesity and is expected to soon become the leading cause of liver cancer in the U.S. and other Western countries, Karin said.

The researchers found that NASH-associated mutations provoke the immune system, including cytotoxic T cells, to recognize and attack the newly emerging cancer cells. However, chronic liver inflammation in both mice and humans also led to the accumulation of immunosuppressive lymphocytes, a type of immune cell Karin and Shalapour first described two years ago.

In the battle between these two types of immune cells, immunosuppressive lymphocytes win -- they use a molecule known as PD-L1 to interfere with cytotoxic T cells. With the brake on T cells, liver tumors formed and grew in the chronically inflamed mice.

In mice that lacked tumor-fighting cytotoxic T cells, 27 percent of 15 mice had large liver tumors at six months. At that same point, mice retaining cytotoxic T cells had no tumors. Similarly, mice without immunosuppressive lymphocytes hardly had any tumors, even at 11 months, presumably since their absence left the cytotoxic T cells alone to do their tumor-fighting job.

"PD-L1 allows immunosuppressive lymphocytes to suppress cytotoxic T cells, but it's also their 'Achilles heel,'" said Karin, who is also the Ben and Wanda Hildyard Chair for Mitochondrial and Metabolic Diseases.

When the researchers inhibited PD-L1 with a drug or by genetic engineering, immunosuppressive plasmocytes were eliminated from the liver, cytotoxic T cells were re-invigorated and they cleared the tumors.

"These findings provide an explanation for the remarkable ability of so-called anti-PD-1 drugs, which block the receptor for PD-L1, to induce liver cancer regression," Karin said. "The first member of this class of drugs was recently approved for the treatment of advanced liver cancer."

Karin, Shalapour and team are now working out how immunosuppressive lymphocyte are recruited to the liver. That information may reveal a way to interfere with the recruitment or generation of these cells, which could provide new means for liver cancer prevention or early treatment.

Liver cancer is the second leading cause of cancer deaths worldwide. Liver cancer is caused by chronic liver inflammation driven by hepatitis B or C, alcohol consumption, non-alcoholic fatty liver disease (NAFLD), or NASH. Currently, the only available treatment is surgical removal or ablation of tumors.
-end-
Study co-authors also include Ingmar N. Bastian, Alexander A. Aksenov, Alison F. Vrbanac, Weihua Li, Andres Perkins, Zhenyu Zhong, Debanjan Dhar, Jose A. Navas-Molina, Jun Xu, Rohit Loomba, Pieter C. Dorrestein, Rob Knight, Christopher Benner, UC San Diego; Xue-Jia Lin, UC San Diego and Jinan University; John Brain, Quentin M. Anstee, Newcastle University; Alastair D. Burt, University of Adelaide; Takaji Matsutani, Repertoire Genesis Incorporation; Michael Downes, Ruth T. Yu, Ronald M. Evans, Salk Institute for Biological Studies.

This research was funded, in part, by the National Institutes of Health (R01AI043477), Superfund Research Program (P42ES010337), European Union's Horizon2020 Framework Program, Newcastle NIHR Biomedical Research Centre, UC San Diego Center for Microbiome Innovation, Irvington-CRI, PCF Young Investigator Award, SCRC, ALF Liver Scholar Award.

University of California - San Diego

Related Immune System Articles:

Memory training for the immune system
The immune system will memorize the pathogen after an infection and can therefore react promptly after reinfection with the same pathogen.
Immune system may have another job -- combatting depression
An inflammatory autoimmune response within the central nervous system similar to one linked to neurodegenerative diseases such as multiple sclerosis (MS) has also been found in the spinal fluid of healthy people, according to a new Yale-led study comparing immune system cells in the spinal fluid of MS patients and healthy subjects.
COVID-19: Immune system derails
Contrary to what has been generally assumed so far, a severe course of COVID-19 does not solely result in a strong immune reaction - rather, the immune response is caught in a continuous loop of activation and inhibition.
Immune cell steroids help tumours suppress the immune system, offering new drug targets
Tumours found to evade the immune system by telling immune cells to produce immunosuppressive steroids.
Immune system -- Knocked off balance
Instead of protecting us, the immune system can sometimes go awry, as in the case of autoimmune diseases and allergies.
Too much salt weakens the immune system
A high-salt diet is not only bad for one's blood pressure, but also for the immune system.
Parkinson's and the immune system
Mutations in the Parkin gene are a common cause of hereditary forms of Parkinson's disease.
How an immune system regulator shifts the balance of immune cells
Researchers have provided new insight on the role of cyclic AMP (cAMP) in regulating the immune response.
Immune system upgrade
Theoretically, our immune system could detect and kill cancer cells.
Using the immune system as a defence against cancer
Research published today in the British Journal of Cancer has found that a naturally occurring molecule and a component of the immune system that can successfully target and kill cancer cells, can also encourage immunity against cancer resurgence.
More Immune System News and Immune System Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at Radiolab.org/donate.     You can read The Transition Integrity Project's report here.