Nav: Home

Ecological Restoration success higher with natural measures than active measures

November 08, 2017

Ecological restoration success is higher for natural regeneration than for active restoration in tropical forests

Restoration of deforested and degraded forest areas can be accomplished through a wide range of activities. At one end of the spectrum are active restoration interventions, such as planting of nursery stock; at the other end are more passive interventions, such as spontaneous or assisted natural regeneration.

Although active interventions are generally favored by practitioners and policy-makers, natural regeneration has been shown to be the most cost-effective approach for recovering biodiversity, ecological processes, and ecosystem services under favorable ecological conditions. Most of this evidence is driven by the substantially lower cost of natural regeneration relative to active restoration. Until now, no robust comparisons of ecological benefits between active restoration and natural regeneration outcomes were made for tropical forest regions, where large-scale restoration efforts are needed to ensure delivery of ecosystem services and to protect biodiversity.

In the paper "Ecological restoration success is higher for natural regeneration than for active restoration in tropical forests," published in 8th November in Science Advances, Renato Crouzeilles, associate research at the International Institute for Sustainability, and his colleagues posed the critical question: Is natural regeneration the most beneficial approach to achieve tropical forest restoration success for biodiversity and vegetation structure?

To fill this knowledge gap, Crouzeilles and colleagues conducted a global meta-analysis of the most comprehensive dataset gathered to date on tropical forest restoration success, encompassing 133 primary studies spread across 115 study landscapes, and contained 1,728 quantitative comparisons between reference (e.g. old-growth forests) and restored systems.

Because forest restoration success is influenced by many confounding factors, the analysis controlled for four key factors known to influence the recovery of biodiversity and vegetation structure: forest amount, precipitation, time elapsed since restoration started, and past disturbance.

Crouzeilles says: "Restoration may not reach complete success, but biodiversity and vegetation structure were 34-56% and 19-56% higher in natural regeneration than in active restoration systems, respectively, but only after controlling for these four key biotic and abiotic factors. These findings suggest that lower cost approaches to restoring biodiversity and vegetation structure in tropical forests can actually be more effective than active restoration."

"Our study challenges the widely held notion that natural regrowth forests offer low conservation value and that restoration strategies should preferentially favor active restoration. This mistaken notion may have arisen due to the lack of controlled biotic and abiotic factors and the short time frame for monitoring forest restoration."

Cruzeilles cautions that "our study does not claim that natural regeneration is always the most cost-effective restoration approach. When conditions are unsuitable for natural regeneration or when particular tree species are needed, active tree planting is recommended. Moreover, biodiversity responses were based primarily on species abundance and richness, which recover far more quickly than species composition."

"One of the major international and national policy priorities for the upcoming years is to align the identified patterns of biophysical and ecological conditions where each or both restoration approaches are more successful, cost-effective and compatible with socio-economic incentives for enabling scaling up tropical forest restoration. Clearly, both approaches are urgently needed to achieve ambitious global forest restoration targets."

Major Findings

Among the major findings of this study:
  • Restoration success was 7-39% and 7-51% lower in natural regeneration or active restoration than in reference systems for biodiversity and vegetation structure, respectively.

  • However, restoration success was 34-56% and 19-56% higher in natural regeneration than in active restoration systems for biodiversity and vegetation structure, respectively, after controlling for key biotic and abiotic factors (forest amount, precipitation, time elapsed since restoration started, and past disturbance).

  • The biotic and abiotic factors must be controlled when comparing restoration approaches to avoid misleading results.
Crouzeilles says that their findings should not be applied uncritically. "There will be areas that are unsuitable for natural regeneration and where active restoration is the only suitable approach. In addition, mixing both restoration approaches might be key to attaining a richer species pool."

One factor that was not controlled for in this study was the socio-economic context where natural regeneration occurred. "Socio-economic factors aligned with biotic and abiotic factors determine where natural regeneration occurs."
"Large-scale forest landscape restoration will therefore be reached only if cost-effective approaches are spatially identified and competition with agricultural land uses is minimized."

For additional information: Renato Crouzeilles - - OR Phone: +55 21-988982865

University of Connecticut

Related Biodiversity Articles:

Biodiversity hypothesis called into question
How can we explain the fact that no single species predominates?
Using the past to maintain future biodiversity
New research shows that safeguarding species and ecosystems and the benefits they provide for society against future climatic change requires effective solutions which can only be formulated from reliable forecasts.
Changes in farming urgent to rescue biodiversity
Humans depend on farming for their survival but this activity takes up more than one-third of the world's landmass and endangers 62% of all threatened species.
Predicting the biodiversity of rivers
Biodiversity and thus the state of river ecosystems can now be predicted by combining environmental DNA with hydrological methods, researchers from the University of Zurich and Eawag have found.
About the distribution of biodiversity on our planet
Large open-water fish predators such as tunas or sharks hunt for prey more intensively in the temperate zone than near the equator.
Bargain-hunting for biodiversity
The best bargains for conserving some of the world's most vulnerable salamanders and other vertebrate species can be found in Central Texas and the Appalachians, according to new conservation tools developed at the National Institute for Mathematical and Biological Synthesis (NIMBioS) at the University of Tennessee, Knoxville.
Researchers solve old biodiversity mystery
The underlying cause for why some regions are home to an extremely large number of animal species may be found in the evolutionary adaptations of species, and how they limit their dispersion to specific natural habitats.
Biodiversity offsetting is contentious -- here's an alternative
A new approach to compensate for the impact of development may be an effective alternative to biodiversity offsetting -- and help nations achieve international biodiversity targets.
Biodiversity yields financial returns
Farmers could increase their revenues by increasing biodiversity on their land.
Biodiversity and wind energy
The location and operation of wind energy plants are often in direct conflict with the legal protection of endangered species.
More Biodiversity News and Biodiversity Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Warped Reality
False information on the internet makes it harder and harder to know what's true, and the consequences have been devastating. This hour, TED speakers explore ideas around technology and deception. Guests include law professor Danielle Citron, journalist Andrew Marantz, and computer scientist Joy Buolamwini.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at     You can read The Transition Integrity Project's report here.