Nav: Home

Deep-sea fish reveals twilight trick

November 08, 2017

A new type of cell has been found in the eye of a deep-sea fish, and scientists say the discovery opens a new world of understanding about vision in a variety of light conditions.

University of Queensland scientists found the new cell type in the deep-sea pearlside fish (Maurolicus spp.), which have an unusual visual system adapted for twilight conditions.

Dr Fanny de Busserolles at UQ's Queensland Brain Institute said the retina of most vertebrate animals - including humans - contained two photoreceptor types: rods for vision in dim light, and cones for daytime vision. Each had different light-sensitive proteins.

"Deep-sea fish, which live at ocean depths below 200m, are generally only active in the dark, so most species have lost all their cones in favour of light-sensitive rods," Dr de Busserolles said.

Pearlsides differed in that they were mostly active at dusk and dawn, close to the water's surface where light levels are intermediate.

"Previously it was thought that pearlsides had retinas composed entirely of rods, but our new study has found this isn't the case," Dr de Busserolles said.

"Humans use their cones during the day our rods at night, but during twilight, although not ideal, we use a combination of both.

"Pearlsides, being active mainly during twilight, have developed a completely different solution.

"Instead of using a combination of rods and cones, they combine aspects of both cells into a single and more efficient photoreceptor type."

The researchers found that the cells - which they have termed "rod-like cones" for their shapes under the microscope - were tuned perfectly to the pearlsides' specific light conditions.

Research leader Professor Justin Marshall said the study was significant.

"It improves understanding of how different animals see the world and how vision might have helped them to conquer even the most extreme environments, including the deep sea," Professor Marshall said.

"Humans love to classify everything into being either black or white.

"However our study shows the truth might be very different from previous theories.

"More comprehensive studies, and caution, are needed when categorising photoreceptor cells into cones and rods."

The study is published in Science Advances.
-end-


University of Queensland

Related Vision Articles:

School-based vision screening programs found 1 in 10 kids had vision problems
A school-based vision screening program in kindergarten, shown to be effective at identifying untreated vision problems in 1 in 10 students, could be useful to implement widely in diverse communities, according to new research in CMAJ (Canadian Medical Association Journal) http://www.cmaj.ca/lookup/doi/10.1503/cmaj.191085.
Restoring vision by gene therapy
Latest scientific findings give hope for people with incurable retinal degeneration.
Vision loss influences perception of sound
People with severe vision loss can less accurately judge the distance of nearby sounds, potentially putting them more at risk of injury.
'Time is vision' after a stroke
University of Rochester researchers studied stroke patients who experienced vision loss and found that the patients retained some visual abilities immediately after the stroke but these abilities diminished gradually and eventually disappeared permanently after approximately six months.
Improving the vision of self-driving vehicles
There may be a better way for autonomous vehicles to learn how to drive themselves: by watching humans.
A new model of vision
MIT researchers have developed a computer model of face processing that could reveal how the brain produces richly detailed visual representations so quickly.
Vision may be the real cause of children's problems
Do you have poor motor skills or struggle to read, write or solve math problems?
Shark and ray vision comes into focus
Until now, little has been known about the evolution of vision in cartilaginous fishes, particularly sharks and their genetic cousins, the rays.
The birth of vision, from the retina to the brain
How do neurons differentiate to become individual components of the visual system?
Tracing the evolution of vision
The function of the visual photopigment rhodopsin and its action in the retina to facilitate vision is well understood.
More Vision News and Vision Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Warped Reality
False information on the internet makes it harder and harder to know what's true, and the consequences have been devastating. This hour, TED speakers explore ideas around technology and deception. Guests include law professor Danielle Citron, journalist Andrew Marantz, and computer scientist Joy Buolamwini.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at Radiolab.org/donate.     You can read The Transition Integrity Project's report here.