Nav: Home

Nanoparticles can limit inflammation by distracting the immune system

November 08, 2017

ANN ARBOR--A surprise finding suggests that an injection of nanoparticles may be able to help fight the immune system when it goes haywire, researchers at the University of Michigan have shown. The nanoparticles divert immune cells that cause inflammation away from an injury site.

Inflammation is a double-edged sword. When it works, it helps the body heal and fights off infections. But sometimes, the immune system overreacts. An acute lung injury, sustained by inhaling smoke, for instance, can lead to runaway fluid production that essentially drowns a person.

Now, experiments in mice suggest that simple plastic nanoparticles, delivered by IV, may be able to keep a type of immune cell--called a neutrophil--too busy to cause inflammation. Other diseases in which neutrophils cause excessive inflammation include sepsis and the hardening of the arteries, or atherosclerosis.

"Neutrophils are the first line of defense. They are the most active and the most optimized to mount an inflammatory response," said Omolola Eniola-Adefeso, a professor of chemical engineering and biomedical engineering at U-M, who led the research. "They're the underdogs of white blood cells, and we're seeing that maybe we need to pay more attention to them."

She didn't start out looking to redirect the immune system with nanoparticles. Rather, her work has been exploring the dynamics within blood vessels that help or hurt the ability of nanoparticles to deliver drugs to the blood vessel wall and beyond. In experiments, her students ran blood through artificial blood vessels--channels etched into a chip and lined with the same kind of cells that line blood vessel walls.

At first, they saw only that the neutrophils were banishing their plastic particles, which were designed to attach to the blood vessel wall. This was a problem because if the particles couldn't bind, they couldn't deliver drugs to diseased tissue. But after watching the microscope video footage many times, they realized that the neutrophils also vanished--they weren't binding to the blood vessel wall either.

"The 'oh my God' of horror about our particle turned into an excitement over these particles doing something to cells that had not previously been explored," Eniola-Adefeso said. "These cool interactions between cells and particles got in the way of either one being able to do what they wanted to do."

Her team designed an experiment injuring part of the blood vessel wall in the microfluidic chips and confirmed that the neutrophils were redirecting their attention from creating inflammation at the injury site to carting the foreign particles away.

Then, Eniola-Adefeso connected with Michael Holinstat, a professor of pharmacology at Michigan Medicine, who has technology that can see into the blood vessels of live mice. In mice with acute lung injury, they found that injecting nanoparticles by IV could reduce the number of neutrophils congregating at the injury site by half or more.

In fact, the neutrophil concentration was similar to the concentration found in the blood of uninjured mice. Instead, the neutrophils were taking the particles to the liver, where they could be removed from circulation. Eniola-Adefeso intends to continue the research in this direction, finding out whether an injection of nanoparticles is a viable treatment for conditions with excessive inflammation.

Her group will also continue troubleshooting nanoparticles as vehicles for targeted drug delivery. One way to keep the neutrophils away is to coat the particles with so-called nonfouling materials--materials that are resistant to picking up proteins from the blood.

Because the chemicals that the team uses to attach the nanoparticles to the blood vessel walls are the same as those used by the neutrophils themselves, a coating that combines nonfouling materials with the targeting chemicals will throw most white blood cells off the scent.

"To date, we've tried many nonfouling materials. But in the end, they foul because nature is very sophisticated," she said.

Alternatively, other research groups have tried taking the membranes from cells that naturally travel to the targeted tissue--for instance, the neutrophils that attach to the blood vessel wall--and putting nanoparticles inside them. Like the alien in human skin from the film "Men in Black."
-end-
The study, "Neutrophil-particle interactions in blood circulation drive particle clearance and alter neutrophil responses in acute inflammation," is published online in the journal Nano Letters. It was funded by the National Science Foundation, the National Institutes of Health and U-M. Eniola-Adefeso is also a professor of biomedical engineering and of macromolecular science and engineering. Holinstat is also an associate professor of internal medicine.

University of Michigan

Related Immune System Articles:

Memory training for the immune system
The immune system will memorize the pathogen after an infection and can therefore react promptly after reinfection with the same pathogen.
Immune system may have another job -- combatting depression
An inflammatory autoimmune response within the central nervous system similar to one linked to neurodegenerative diseases such as multiple sclerosis (MS) has also been found in the spinal fluid of healthy people, according to a new Yale-led study comparing immune system cells in the spinal fluid of MS patients and healthy subjects.
COVID-19: Immune system derails
Contrary to what has been generally assumed so far, a severe course of COVID-19 does not solely result in a strong immune reaction - rather, the immune response is caught in a continuous loop of activation and inhibition.
Immune cell steroids help tumours suppress the immune system, offering new drug targets
Tumours found to evade the immune system by telling immune cells to produce immunosuppressive steroids.
Immune system -- Knocked off balance
Instead of protecting us, the immune system can sometimes go awry, as in the case of autoimmune diseases and allergies.
Too much salt weakens the immune system
A high-salt diet is not only bad for one's blood pressure, but also for the immune system.
Parkinson's and the immune system
Mutations in the Parkin gene are a common cause of hereditary forms of Parkinson's disease.
How an immune system regulator shifts the balance of immune cells
Researchers have provided new insight on the role of cyclic AMP (cAMP) in regulating the immune response.
Immune system upgrade
Theoretically, our immune system could detect and kill cancer cells.
Using the immune system as a defence against cancer
Research published today in the British Journal of Cancer has found that a naturally occurring molecule and a component of the immune system that can successfully target and kill cancer cells, can also encourage immunity against cancer resurgence.
More Immune System News and Immune System Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at Radiolab.org/donate.     You can read The Transition Integrity Project's report here.