Nav: Home

Fighting cancer with cancer: 3-D cultured cells could drive precision therapy

November 08, 2017

ANN ARBOR--Honeycomb-like arrays of tiny, lab-grown cancers could one day help doctors zero in on individualized treatments for ovarian cancer, an unpredictable disease that kills more than 14,000 women each year in the United States alone.

A team of researchers has devised a process that can grow hundreds of cultured cell masses, called spheroids, from just a few tumor cells derived from a patient. Grown in a U-M-developed structure called a 384-hanging drop array, each spheroid is encased in a tiny droplet of a special culturing medium. This 3-D method yields cells that grow and multiply just as they would inside the body.

Eventually, those spheroids could serve as a testing ground where doctors could quickly try out many different medications, finding the best combination for an individual patient and adjusting on the fly as the disease evolves. This could help them stay one step ahead of the tumor cells inside the patient's body.

"Today we're limited to two-dimensional cells grown in bovine serum that's derived from cows. Cells grown this way often don't respond to medication the same way as ovarian cancer cells inside the body," said Geeta Mehta, the Dow Corning Assistant Professor of Materials Science and Engineering at U-M and leader of the research team that developed the technique. "Three-dimensional cultured spheroids provide a much more predictive way to test many different medications, and a way to grow many cultured cells from just a few of the patient-derived cells."

In a recent study, researchers administered cancer drugs to the cultured cancer spheroids and compared their response to that of ovarian cancer cells that had been removed from the same patient and implanted into mice. They showed that the response of the cultured spheroids accurately mirrored that of the natural cells implanted in the mice. The findings are detailed in a study in the journal Clinical Cancer Research.

Mehta explains that even among cancers, ovarian cancer is particularly menacing. Its free-floating spheroids shuttle cancer through the abdomen with the ability to form new tumors wherever they go--the liver, the intestines, the abdominal wall. And the cells within those spheroids mutate often and unpredictably, quickly developing new strains that resist chemotherapy drugs.

Ovarian cancer's deadly adaptability contributes to a 70-percent relapse rate among patients who have had surgery to remove a tumor. It's these patients who Mehta believes may one day benefit from this technique.

The hanging drop array's hundreds of individual compartments make it possible to grow many spheroids at once and quickly gather data about multiple drugs. This is key, as chemotherapy treatment often requires complex cocktails of multiple drugs administered together. The cells could provide a way to test many such cocktails simultaneously.

While widespread clinical use is likely years off, Mehta says the team now plans to do more extensive testing, culturing cells from patients who are undergoing chemotherapy, then administering the same chemotherapy drugs to the cultured cells and measuring their response.

"This is a really important step to expedite personalized medicine for cancer patients," said Ronald Buckanovich, a professor of medicine at the University of Pittsburgh and a senior co-author of the study. "The ability to take patients' samples, rapidly grow them in a more physiologic manner and study their response to therapy, without using mice, will be a faster, cheaper and more humane way to rapidly test a patient's response to dozens of therapeutics"

The team also plans to expand testing of the treatment beyond cancer stem cells to other cell types with the goal of gaining a broader understanding of the role each cell type plays in building resistance to chemotherapy.

"This gets us closer to an understanding of what treatment options work best, but it also gives us a way to study exactly what happens when a treatment fails," said study co-author Karen McLean, assistant professor of gynecologic oncology at Michigan Medicine. "And understanding why something doesn't work can be extremely useful as a way of developing better treatments or treatment combinations."
-end-
The study is titled "Personalized medicine-based approach to model patterns of chemoresistance and tumor recurrence using ovarian cancer stem cell spheroids." The research was supported by the Department of Defense Ovarian Cancer Research Program Early Career Investigator Awards and by the National Cancer Institute of the National Institutes of Health, award number P30CA046592.

The research team also includes U-M materials science and engineering research fellow Shreya Raghavan, mechanical engineering research technician Pooja Mehta, materials science and engineering graduate researcher Maria Ward Rashidi and biomedical engineering graduate research assistants Michael Bregenzer and Elyse Fleck.

University of Michigan

Related Chemotherapy Articles:

Chemotherapy is used to treat less than 25% of people with localized sarcoma
UCLA researchers have found that chemotherapy is not commonly used when treating adults with localized sarcoma, a rare type of cancer of the soft tissues or bone.
Starved cancer cells became more sensitive to chemotherapy
By preventing sugar uptake, researchers succeeded in increasing the cancer cells' sensitivity to chemotherapeutic treatment.
Vitamin D could help mitigate chemotherapy side effects
New findings by University of South Australia researchers reveal that Vitamin D could potentially mitigate chemotherapy-induced gastrointestinal mucositis and provide relief to cancer patients.
Less chemotherapy may have more benefit in rectal cancer
GI Cancers Symposium: Colorado study of 48 patients with locally advanced rectal cancer receiving neoadjuvant chemotherapy, found that patients receiving lower-than-recommended doses in fact saw their tumors shrink more than patients receiving the full dose.
Male fertility after chemotherapy: New questions raised
Professor Delbès, who specializes in reproductive toxicology, conducted a pilot study in collaboration with oncologists and fertility specialists from the McGill University Health Centre (MUHC) on a cohort of 13 patients, all survivors of pediatric leukemia and lymphoma.
'Combo' nanoplatforms for chemotherapy
In a paper to be published in the forthcoming issue in NANO, researchers from Harbin Institute of Technology, China have systematically discussed the recent progresses, current challenges and future perspectives of smart graphene-based nanoplatforms for synergistic tumor therapy and bio-imaging.
Nanotechnology improves chemotherapy delivery
Michigan State University scientists have invented a new way to monitor chemotherapy concentrations, which is more effective in keeping patients' treatments within the crucial therapeutic window.
Novel anti-cancer nanomedicine for efficient chemotherapy
Researchers have developed a new anti-cancer nanomedicine for targeted cancer chemotherapy.
Ending needless chemotherapy for breast cancer
A diagnostic test developed at The University of Queensland might soon determine if a breast cancer patient requires chemotherapy or would receive no benefit from this gruelling treatment.
A homing beacon for chemotherapy drugs
Killing tumor cells while sparing their normal counterparts is a central challenge of cancer chemotherapy.
More Chemotherapy News and Chemotherapy Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Warped Reality
False information on the internet makes it harder and harder to know what's true, and the consequences have been devastating. This hour, TED speakers explore ideas around technology and deception. Guests include law professor Danielle Citron, journalist Andrew Marantz, and computer scientist Joy Buolamwini.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at Radiolab.org/donate.     You can read The Transition Integrity Project's report here.