Biomimetics: The chemical tricks of our blood

November 08, 2018

The job of hemoglobin in our body seems to be quite simple: It transports oxygen molecules through our bloodstream. But this only works so well because the hemoglobin molecule is extremely complex. The same applies to chlorophyll, which converts sunlight into energy for plants.

In order to understand the subtle tricks of such complex molecules, it is worth investigating similar but simpler structures in the lab. In a cooperation between TU Wien (Vienna) and research groups from Trieste, phthalocyanines have now been studied, whose molecular ring structure closely resembles the crucial sections of hemoglobin or chlorophyll. It turned out that the center of these ring structures can be switched into different states with the help of green light, which affects their chemical behavior.

Not only does this help to understand biological processes, it also opens up new possibilities for using the tricks of nature in the laboratory for other purposes - a strategy called "biomimetics" that is becoming increasingly important all around the world.

Rings with Metal Atoms at the Centre

"The phthalocyanines that we study are colorful dyes with a characteristic ring structure," says Prof. Günther Rupprechter from the Institute of Material Chemistry at the Vienna University of Technology. "Crucial to this ring structure is that it can hold an iron atom in its center - just like the heme, the ring-shaped red dyes in hemoglobin. Chlorophyll, on the other hand, has a similar ring that captures magnesium atoms. "

In contrast to the more complicated natural molecules, the custom-made phthalocyanine dyes can be regularly placed side by side on a surface, such as tiles on the bathroom wall. "The rings were placed on a graphene layer in a regular pattern, so that a two-dimensional crystal of dye rings was created," says Matteo Roiaz, who conducted the experiments together with Christoph Rameshan. "This has the advantage that we can examine many molecules at the same time, which gives us much stronger measurement signals," explains Christoph Rameshan.

Carbon monoxide molecules served as probes for investigating these rings: one molecule can attach to the iron atom, which is held in the center of the ring. From the vibration of the carbon monoxide molecule one can gain information about the state of the iron atom.

To study the vibration, the molecule was irradiated with laser light - using a combination of green and infrared light. This measurement yielded a result that seemed strongly counterintuitive at first glance: "We did not simply measure a single vibrational frequency of carbon monoxide, instead we found four different frequencies. No one had expected this," says Günther Rupprechter. "The iron atoms are all identical, so the CO molecules attached to them should all show exactly the same behavior."

As it turned out, the green light of the laser was responsible for a remarkable effect: at first, all the iron atoms were indeed identical, but the interaction with green light can switch them to different states. "This also changes the oscillation frequency of the CO molecule on the iron atom, which shows us how sensitively such structures react to tiny changes," says Günther Rupprechter. "That is also the reason the biomolecules in our bodies have such a complex structure: the widely branched protein components have a minimal impact on the states of the metal atom, but this minimal impact can have very important implications."

Measuring at Room Temperature and Atmospheric Pressure

Until now, similar effects could only be studied at extremely low temperatures and in ultrahigh vacuum. "In the laboratory, we now have two methods in which such biologically relevant phenomena can be measured at room temperature and atmospheric pressure, with and without green light," emphasizes Rupprechter. This opens up new possibilities for a better understanding of the chemical behavior of biological substances; it could also open up the opportunity to tailor novel molecules in order to optimize them for nature-specific chemical purposes.
-end-
Contact:

Prof. Günther Rupprechter
Institute for Materials Chemistry
TU Wien
T: +43-1-58801-165100
guenther.rupprechter@tuwien.ac.at

Vienna University of Technology

Related Hemoglobin Articles from Brightsurf:

Tibetan antelope thrive at high altitudes using a juvenile form of blood oxygen transport
Adult Tibetan antelope have overcome oxygen deprivation on the high-altitude Tibetan Plateau through an unusual adaptation in which they permanently express a form of hemoglobin (the iron-containing oxygen transport protein in red blood cells) that other members of the cattle family only express as juveniles or when under extreme oxygen deprivation.

New mobile health tool measures hemoglobin without drawing blood
Researchers have developed a way to use smartphone images of a person's eyelids to assess blood hemoglobin levels.

Researchers reveal origins of complex hemoglobin by resurrecting ancient proteins
Researchers trace the evolutionary origins of hemoglobin by resurrecting ancient proteins from more than 400 million years ago.

How malaria parasites become resistant to artemisinin antimalarial drugs
Malaria parasite mutations that inhibit the endocytoic appetite for a host's red blood cells may render them resistant to artemisinin, a widely used frontline antimalarial drug, according to a new study, which reveals a key molecular mechanism of drug resistance.

Protein in blood protects against neuronal damage after brain hemorrhage
Patients who survive a cerebral hemorrhage may suffer delayed severe brain damage caused by free hemoglobin, which comes from red blood cells and damages neurons.

Both low and high levels of hemoglobin linked to increased risk of dementia
Having either low or high levels of hemoglobin in your blood may be linked to an increased risk of developing dementia years later, according to a study published in the July 31, 2019, online issue of Neurology®, the medical journal of the American Academy of Neurology.

UH researcher reports the way sickle cells form may be key to stopping them
University of Houston chemist Vassiliy Lubchenko is reporting a new finding in Nature Communications on how sickle cells are formed, which may lead not only to stopping their formation, but to new avenues for making uniformly-sized nanoparticles for industry.

Athletes with sickle cell traits are at more risk to collapse: here's why
A genetic variation known to affect sickle cell disease might be the reason why some college football players experience adverse clinical outcomes during periods of extreme physical exertion and others do not.

Application of nanosized LiFePO4 modified electrode to electrochemical sensor & biosensor
The aim of this paper was to construct nanosized LFP modified electrodes, which could be applied as working electrode for rutin analysis and as an electrochemical biosensor for direct electrochemistry of Hemoglobin (Hb).

New portable blood analyzer could improve anemia detection worldwide
To reduce the burden of anemia, health officials need a better picture of the disease's global impact, an understanding made viable by a portable and affordable way to analyze blood.

Read More: Hemoglobin News and Hemoglobin Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.