Nav: Home

One million years of precipitation history of the monsoon reconstructed

November 08, 2018

Months of heavy rainfall followed by half a year of drought - the South Asian Monsoon with its seasonally changing rainfall and wind directions has always strongly influenced the lives of people around the Indian Ocean. It is of crucial importance for agriculture and thus the food supply of several billion people. At the same time, floods and landslides in densely populated areas can be catastrophic.

But how exactly does this important climate system work? And how will it change in response to future global warming? "Even the best coupled ocean-atmosphere models still have problems to simulate the precipitation of the South Asian Monsoon," says lead author Dr. Daniel Gebregiorgis from the GEOMAR Helmholtz Centre for Ocean Research Kiel, who is now working at Georgia State University in Atlanta (Georgia, USA). Together with colleagues from Kiel and the USA, he investigated new climate archives of the history of the South Asian Monsoon, which point to connections and monsoon drivers in the southern hemisphere that have previously received little attention. The study has been published today in the international journal Nature Communications.

In its simplest form, the monsoon is driven by pressure and temperature differences between the Asian continent and the southern subtropical Indian Ocean. "The variability of the monsoon over recent geological time periods is thought to be driven by changes in solar insolation in the northern hemisphere caused by the regularly changing inclination of the Earth's axis," explains Dr. Gebregiorgis.

So far, the longer reconstruction of the monsoon history is based mainly on two climate archives: sediment cores from the Arabian Sea and stalagmites from caves in China. "The former, however, only provide information on wind conditions and not precipitation over the Indian subcontinent, while the latter has long been thought to reflect precipitation from the East Asian Monsoon. And both respond distinctly different to changes in Northern Hemisphere summer insolation on orbital timescale," explains Ed Hathorne of GEOMAR, co-author of the study.

He and his colleagues have now for the first time evaluated sediment cores from the eastern Indian Ocean that had been obtained as part of the International Ocean Discovery Program. The chemical analysis of the shells of tiny plankton that settle and are preserved on the seafloor allows the reconstruction of temperature and the amount of fresh water at the sea surface during the organisms' lifetimes. "Using this we have been able to reconstruct precipitation in the eastern Indian Ocean for the past one million years," says Dr. Hathorne.

The new record generally shows that the precipitation of the South Asian Monsoon was weaker during the peak ice ages and strongest during the interglacial warm periods like today. "However, we were only able to associate 30 percent of the variability of monsoon precipitation in the eastern Indian Ocean with fluctuations in the Earth's axis inclination. This means that it only plays a subordinate role in the fluctuations of the monsoon," emphasizes Dr Gebregiorgis. Instead, the results of the scientists pointed to important connections with warming phases in the southern hemisphere and moisture transport across the equator to the north. "This process has hardly been considered so far," says Dr. Gebregiorgis.

"The evaluation of the new climate archives shows that we have still not fully understood the monsoon. As long as this is not the case, it is difficult to estimate the reactions of this important climate system to a globally warming atmosphere," summarizes working group leader Prof. Dr. Martin Frank from GEOMAR.

Helmholtz Centre for Ocean Research Kiel (GEOMAR)

Related Monsoon Articles:

This is what the monsoon might look like in a warmer world
In the last interglacial period on Earth about 125,000 years ago, the Indian monsoon was longer, more extreme and less reliable than it is today.
Maritime continent weakens Asian Tropical Monsoon rainfall through Australian cross-equatorial flows
A new study reveals how maritime continent weakens Asian tropical monsoon rainfall through Australian Cross-equatorial Flows.
Climate models and geology reveal new insights into the East Asian monsoon
A team of scientists, led by the University of Bristol, have used climate models and geological records to better understand changes in the East Asian monsoon over long geologic time scales.
Intensified global monsoon extreme rainfall signals global warming -- A study
A new study reveals significant associations between global warming and the observed intensification of extreme rainfall over the global monsoon region and its several subregions, including the southern part of South Africa, India, North America and the eastern part of the South America.
Monsoon rains have become more intense in the southwest in recent decades
Monsoon rain storms have become more intense in the southwestern United States in recent decades, according to a study recently published by Agricultural Research Service scientists.
Global warming will accelerate water cycle over global land monsoon regions
A new study provides a broader understanding on the redistribution of freshwater resources across the globe induced by future changes in the monsoon system.
Volcano eruption at different latitudes: A switch of hemispheric monsoon rainfall change
Future volcanic eruptions located in different latitudes will impact the monsoon rainfall differently through circulation changes, which implies that the rainfall response to volcanic eruptions at different hemispheres should be considered in the design of Decadal Climate Prediction Project (DCPP) experiments and the implementation of geoengineering activities.
Why is east Asian summer monsoon circulation enhanced under global warming?
A collaborated study shows that the Tibetan Plateau plays an essential role in enhancing the East Asian summer monsoon circulation under global warming through enhanced latent heating over the Tibetan Plateau.
Continent drift and plateau uplift drive evolutions of Asia-Africa-Australia monsoon and arid regions
Monsoon and arid regions in the Asia-Africa-Australia realm occupy more than 60% of the total area of these continents.
New research finds unprecedented weakening of Asian summer monsoon
Rainfall from the Asian summer monsoon has been decreasing over the past 80 years, a decline unprecedented in the last 448 years, according to a new study in the AGU journal Geophysical Research Letters.
More Monsoon News and Monsoon Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

Accessing Better Health
Essential health care is a right, not a privilege ... or is it? This hour, TED speakers explore how we can give everyone access to a healthier way of life, despite who you are or where you live. Guests include physician Raj Panjabi, former NYC health commissioner Mary Bassett, researcher Michael Hendryx, and neuroscientist Rachel Wurzman.
Now Playing: Science for the People

#544 Prosperity Without Growth
The societies we live in are organised around growth, objects, and driving forward a constantly expanding economy as benchmarks of success and prosperity. But this growing consumption at all costs is at odds with our understanding of what our planet can support. How do we lower the environmental impact of economic activity? How do we redefine success and prosperity separate from GDP, which politicians and governments have focused on for decades? We speak with ecological economist Tim Jackson, Professor of Sustainable Development at the University of Surrey, Director of the Centre for the Understanding of Sustainable Propserity, and author of...
Now Playing: Radiolab

An Announcement from Radiolab