Nav: Home

Cell behavior, once shrouded in mystery, is revealed in new light

November 08, 2018

A cell's behavior is as mysterious as a teenager's mood swings. However, University of Missouri researchers are one step closer to understanding cell behavior, with the help of a specialized microscope.

Previously, in order to study cell membranes, researchers would often have to freeze samples. The proteins within these samples would not behave like they would in a normal biological environment. Now, using an atomic force microscope, researchers can observe individual proteins in an unfrozen sample -- acting in a normal biological environment. This new observation tool could help scientists better predict how cells will behave when new components are introduced.

"What's missing right now in cell biology is the ability to predict cell behavior," said Gavin King, associate professor of physics and astronomy in the MU College of Arts and Science, and joint assistant professor of biochemistry. "We don't know all of the details yet on a number of biological processes. For example, when a drug is introduced to a cell, it must pass through the membrane, which may create a reaction. The more knowledge we have about that reaction, the better we will be able to create drugs that can target a specific area and, possibly, result in fewer side effects."

The atomic force microscope is capable of tracing the three-dimensional shape of an individual protein in biological conditions (in fluid at room temperature). It is comprised of a robotic arm with a tiny needle attached on one end. Researchers position the arm precisely on the sample they wish to analyze. Then, by very gently tapping the needle multiple times into the specimen in various points, a real-time, three-dimensional image of a protein is developed.

For this study, researchers focused on imaging the consequences of a chemical reaction occurring within one particular protein from E.coli that is responsible for transporting other proteins across the cell membrane. They picked E.coli for this study because of the simplicity of its cells. While researchers could not control the precise moment the reaction occurred, the force microscope's tapping motion allowed researchers to watch in real time how that protein changed its shape in response to the release of chemical energy. These conformational changes are directly related to the protein's biological function.

"We can keep our eyes on just one protein, add various components, and then watch what happens," King said. "It is like making a movie of a single molecule doing its biological work. We are really in the early days of understanding the mechanical details of how cells work, but as these tools become increasingly more precise they could provide us with essential information in the future."
-end-
The study, "Single molecule observation of nucleotide induced conformational changes in basal SecA-ATP hydrolysis," was published in Science Advances. Funding was provided by the National Science Foundation (CAREER Award #: 1054832) and a Burroughs Welcome Fund Career Award. The content is solely the responsibility of the authors and does not necessarily represent the official views of the funding agencies.

In addition to King, the publication was co-written by Nagaraju Chada, Kanokporn Chattrakun and Brendan P. Marsh of the MU Department of Physics and Astronomy, along with Chunfeng Mao and Priya Bariya of the MU Department of Biochemistry.

University of Missouri-Columbia

Related Proteins Articles:

Discovering, counting, cataloguing proteins
Scientists describe a well-defined mitochondrial proteome in baker's yeast.
Interrogating proteins
Scientists from the University of Bristol have designed a new protein structure, and are using it to understand how protein structures are stabilized.
Ancient proteins studied in detail
How did protein interactions arise and how have they developed?
What can we learn from dinosaur proteins?
Researchers recently confirmed it is possible to extract proteins from 80-million-year-old dinosaur bones.
Relocation of proteins with a new nanobody tool
Researchers at the Biozentrum of the University of Basel have developed a new method by which proteins can be transported to a new location in a cell.
Proteins that can take the heat
Ancient proteins may offer clues on how to engineer proteins that can withstand the high temperatures required in industrial applications, according to new research published in the Proceedings of the National Academy of Sciences.
Designer proteins fold DNA
Florian Praetorius and Professor Hendrik Dietz of the Technical University of Munich have developed a new method that can be used to construct custom hybrid structures using DNA and proteins.
The proteins that domesticated our genomes
EPFL scientists have carried out a genomic and evolutionary study of a large and enigmatic family of human proteins, to demonstrate that it is responsible for harnessing the millions of transposable elements in the human genome.
Rare proteins collapse earlier
Some organisms are able to survive in hot springs, while others can only live at mild temperatures because their proteins aren't able to withstand such extreme heat.
How proteins reshape cell membranes
Small 'bubbles' frequently form on membranes of cells and are taken up into their interior.

Related Proteins Reading:

Proteins: Structure and Function
by David Whitford (Author)

Proteins: Concepts in Biochemistry
by Paulo Almeida (Author)

Protein Power: The High-Protein/Low Carbohydrate Way to Lose Weight, Feel Fit, and Boost Your Health-in Just Weeks!
by Michael R. Eades (Author), Mary Dan Eades (Author)

The High-Protein Vegetarian Cookbook: Hearty Dishes that Even Carnivores Will Love
by Katie Parker (Author), Kristen Smith (Author)

How Proteins Work
by Mike Williamson (Author)

The High-Protein Vegan Cookbook: 125+ Hearty Plant-Based Recipes
by Ginny Kay McMeans (Author)

The High-Protein Cookbook: More than 150 healthy and irresistibly good low-carb dishes that can be on the table in thirty minutes or less.
by Linda West Eckhardt (Author), Katherine West Defoyd (Author)

The Effective Vegan Diet: 50 High Protein Recipes for a Healthier Lifestyle

Janeva's Ideal Recipes: A Personal Recipe Collection for the Ideal Protein Phase 1 Diet [Revised Version 1]
by Janeva Caroline Eickhoff (Author)

DIY Protein Bars Cookbook [3rd Edition]: Easy, Healthy, Homemade No-Bake Treats That Are Packed With Protein!
by Jessica Stier (Author)

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Approaching With Kindness
We often forget to say the words "thank you." But can those two words change how you — and those around you — look at the world? This hour, TED speakers on the power of gratitude and appreciation. Guests include author AJ Jacobs, author and former baseball player Mike Robbins, Dr. Laura Trice, Professor of Management Christine Porath, and former Danish politician Özlem Cekic.
Now Playing: Science for the People

#509 Anisogamy: The Beginning of Male and Female
This week we discuss how the sperm and egg came to be, and how a difference of reproductive interest has led to sexual conflict in bed bugs. We'll be speaking with Dr. Geoff Parker, an evolutionary biologist credited with developing a theory to explain the evolution of two sexes, about anisogamy, sexual reproduction through the fusion of two different gametes: the egg and the sperm. Then we'll speak with Dr. Roberto Pereira, research scientist in urban entomology at the University of Florida, about traumatic insemination in bed bugs.