UK scientists opening up access to science through DIY equipment

November 08, 2018

Scientists at the University of Sussex have developed a piece of hardware to demonstrate how our brains function, as part of a growing range of equipment which uses DIY and 3D printable models to open up access to science education.

Professor of Neuroscience, Tom Baden, has been working with colleagues to build Spikeling; a piece of electronic kit which behaves similarly to neurons in the brain.

Understanding how neurons encode and compute information is a central part of neuroscience but until now, opportunities for hands-on experience has been scarce.

But for just £25, Professor Baden may have found a way to make the process of learning neuroscience much more interactive.

Spikeling simulates how nerve cells in the brain compute information, with receptors that react to external stimuli like light.

Students can then follow the activity of the brain cells and their underlying mechanisms live on a computer screen.

Multiple Spikelings can be linked together to form a network, showing how brain neurons interconnect; allowing scientists to demonstrate the behaviour behind every day actions like walking.

Professor Baden said: "Spikeling is a useful piece of kit for anyone teaching neuroscience because it allows us to demonstrate how neurons work in a more interactive way."

Professor Baden and his team hope that Spikeling will become a useful teaching tool in neuroscience and the kit is already being put into practice, with the teaching of third year Neuroscience students at the University of Sussex, and at a summer school in Nigeria in 2017 where scientists were also taught how to build the hardware from scratch.

Spikeling is the latest in a line of equipment developed by Professor Baden, who also recently developed designs for a 3D printable microscope called FlyPi, which can be set up with a basic unit for 100 Euros (compared to commercial microscopes costing thousands of dollars) and a pipette.

All have been made available openly with the design for Spikeling published on open access journal PLOS Biology.

Professor Baden explained: "With all parts being cheap, and design files being free and open, we hope that like any open Hardware design, Spikeling can be a starting point for others to change or extend it to their requirements, and reshare their improved design with the community."

This is sharing of design files is a growing trend with hundreds of designs from the global community constantly collected on the PLOS Open Hardware toolkit, co-moderated by Professor Baden.

The overall aim for Baden's lab, is to level the playing field in global science where equipment is otherwise expensive.

Andre Maia Chagas, a Research Technician in the lab, recently wrote an article advocating the need for open scientific hardware.

Also published in PLOS Biology, the article was a response to a piece by American neuroscientist Eve Marder which questioned whether researchers in less wealth institutions may be left behind as the equipment needed to perform scientific research becomes ever more expensive.

Professor Baden said: "By making access to scientific and teaching equipment free and open, researchers and educators can take the future into their own hands. In time, we hope that this type of work will contribute to level the playing field across the globe, such that ideas, not funding can be the primary driver for success and new insights".
-end-


University of Sussex

Related Neurons Articles from Brightsurf:

Paying attention to the neurons behind our alertness
The neurons of layer 6 - the deepest layer of the cortex - were examined by researchers from the Okinawa Institute of Science and Technology Graduate University to uncover how they react to sensory stimulation in different behavioral states.

Trying to listen to the signal from neurons
Toyohashi University of Technology has developed a coaxial cable-inspired needle-electrode.

A mechanical way to stimulate neurons
Magnetic nanodiscs can be activated by an external magnetic field, providing a research tool for studying neural responses.

Extraordinary regeneration of neurons in zebrafish
Biologists from the University of Bayreuth have discovered a uniquely rapid form of regeneration in injured neurons and their function in the central nervous system of zebrafish.

Dopamine neurons mull over your options
Researchers at the University of Tsukuba have found that dopamine neurons in the brain can represent the decision-making process when making economic choices.

Neurons thrive even when malnourished
When animal, insect or human embryos grow in a malnourished environment, their developing nervous systems get first pick of any available nutrients so that new neurons can be made.

The first 3D map of the heart's neurons
An interdisciplinary research team establishes a new technological pipeline to build a 3D map of the neurons in the heart, revealing foundational insight into their role in heart attacks and other cardiac conditions.

Mapping the neurons of the rat heart in 3D
A team of researchers has developed a virtual 3D heart, digitally showcasing the heart's unique network of neurons for the first time.

How to put neurons into cages
Football-shaped microscale cages have been created using special laser technologies.

A molecule that directs neurons
A research team coordinated by the University of Trento studied a mass of brain cells, the habenula, linked to disorders like autism, schizophrenia and depression.

Read More: Neurons News and Neurons Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.