Nav: Home

A burst of 'synchronous' light

November 08, 2018

Some materials spontaneously emit light if they are excited by an external source, for instance a laser. This phenomenon is known as fluorescence. However, in several gases and quantum systems a much stronger emission of light can occur, when the emitters within an ensemble spontaneously synchronize their quantum mechanical phase with each other and act together when excited. In this way, the resulting light output can be much more intense than the sum of the individual emitters, leading to an ultrafast and bright emission of light - superfluorescence. It only occurs, however, when those emitters fulfill stringent requirements, such as having the same emission energy, high coupling strength to the light field and a long coherence time. As such, they are strongly interacting with each other but at the same time are not easily disturbed by their environment. This has not been possible up to now using technologically relevant materials. Colloidal quantum dots could just be the ticket; they are a proven, commercially appealing solution already employed in the most advanced LCD television displays - and they fulfill all the requirements.

Researchers at Empa and ETH Zurich, led by Maksym Kovalenko, together with colleagues from IBM Research Zurich, have now shown that the most recent generation of quantum dots made of lead halide perovskites offer an elegant and practically convenient path to superfluorescence on-demand. For this, the researchers arranged perovskite quantum dots into a three-dimensional superlattice, which enables the coherent collective emission of photons - thus creating superfluorescence. This provides the basis for sources of entangled multi-photon states, a missing key resource for quantum sensing, quantum imaging and photonic quantum computing.

"Birds of a feather flock together"

A coherent coupling among quantum dots requires, however, that they all have the same size, shape and composition because "birds of a feather flock together" in the quantum universe, too. "Such long-range ordered superlattices could only be obtained from a highly monodisperse solution of quantum dots, the synthesis of which had been carefully optimized over the last few years," said Maryna Bodnarchuk, a senior scientist at Empa. With such "uniform" quantum dots of various sizes, the research team could then form superlattices by properly controlling the solvent evaporation.

The final proof of superfluorescence came from optical experiments performed at temperatures of around minus 267 degrees Celsius. The researchers discovered that photons were emitted simultaneously in a bright burst: "This was our 'Eureka! ' moment. The moment we realized that this was a novel quantum light source," said Gabriele Rainó from ETH Zurich and Empa who was part of the team that carried out the optical experiments.

The researchers consider these experiments as a starting point to further exploit collective quantum phenomena with this unique class of material. "As the properties of the ensemble can be boosted compared to just the sum of its parts, one can go way beyond engineering the individual quantum dots," added Michael Becker from ETH Zurich and IBM Research. The controlled generation of superfluorescence and the corresponding quantum light could open new possibilities in LED lighting, quantum sensing, quantum-encrypted communication and future quantum computing.
-end-


Swiss Federal Laboratories for Materials Science and Technology (EMPA)

Related Quantum Dots Articles:

Graphene and quantum dots put in motion a CMOS-integrated camera that can see the invisible
ICFO develops the first graphene-based camera, capable of imaging visible and infrared light at the same time.
Platelets instead of quantum dots
A team of researchers led by ETH Zurich professor David Norris has developed a model to clarify the general mechanism of nanoplatelet formation.
Quantum dots illuminate transport within the cell
Biophysicists from Utrecht University have developed a strategy for using light-emitting nanocrystals as a marker in living cells.
'Flying saucer' quantum dots hold secret to brighter, better lasers
By carefully controlling the size of the quantum dots, the researchers can 'tune' the frequency, or color, of the emitted light to any desired value.
'Flying saucer' colloidal quantum dots produce brighter, better lasers
A multi-institutional team of researchers from Canada and the US has demonstrated steady state lasing with solution-processed nanoparticles called 'colloidal quantum dots,' an important step on the path to improving laser tools for fiber optics, video projectors and more accurate medical testing technology.
Quantum dots with impermeable shell: A powerful tool for nanoengineering
Depending on their applications, quantum dots need to be tailored in terms of their structure and properties.
USC quantum computing researchers reduce quantum information processing errors
USC Viterbi School of Engineering scientists found a new method to reduce the heating errors that have hindered quantum computing.
A new form of hybrid photodetectors with quantum dots and graphene
ICFO researchers develop a hybrid photodetector comprising an active colloidal quantum dot photodiode integrated with a graphene phototransistor.
ORNL demonstrates large-scale technique to produce quantum dots
ORNL demonstrates a method to produce significant amounts of semiconducting nanoparticles for light-emitting displays, sensors, solar panels and biomedical applications.
First single-enzyme method to produce quantum dots revealed
Three Lehigh University engineers have successfully demonstrated the first precisely controlled, biological way to manufacture quantum dots using a single-enzyme, paving the way for a significantly quicker, cheaper and greener production method.

Related Quantum Dots Reading:

Quantum Wells, Wires and Dots: Theoretical and Computational Physics of Semiconductor Nanostructures
by Paul Harrison (Author), Alex Valavanis (Author)

The Quantum Dot: A Journey into the Future of Microelectronics
by Richard Turton (Author)

Quantum Dots for Quantum Information Technologies (Nano-Optics and Nanophotonics)
by Peter Michler (Editor)

Nanocrystal Quantum Dots (Laser and Optical Science and Technology)
by CRC Press

Colloidal Quantum Dot Optoelectronics and Photovoltaics
by Gerasimos Konstantatos (Editor), Edward H. Sargent (Editor)

Quantum Dots: Applications in Biology (Methods in Molecular Biology)
by Charles Z. Hotz (Editor), Marcel Bruchez (Editor)

Single Semiconductor Quantum Dots (NanoScience and Technology)
by Peter Michler (Editor)

Design of Arithmetic Circuits in Quantum Dot Cellular Automata Nanotechnology (Studies in Computational Intelligence)
by K. Sridharan (Author), Vikramkumar Pudi (Author)

Quantum Dot Heterostructures
by Dieter Bimberg (Author), Marius Grundmann (Author), Nikolai N. Ledentsov (Author)

Quantum Wells, Wires and Dots: Theoretical and Computational Physics of Semiconductor Nanostructures
by Wiley

Best Science Podcasts 2018

We have hand picked the best science podcasts for 2018. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Unintended Consequences
Human innovation has transformed the way we live, often for the better. But as our technologies grow more powerful, so do their consequences. This hour, TED speakers explore technology's dark side. Guests include writer and artist James Bridle, historians Yuval Noah Harari and Edward Tenner, internet security strategist Yasmin Green, and journalist Kashmir Hill.
Now Playing: Science for the People

#499 Technology, Work and The Future (Rebroadcast)
This week, we're thinking about how rapidly advancing technology will change our future, our work, and our well-being. We speak to Richard and Daniel Susskind about their book "The Future of Professions: How Technology Will Transform the Work of Human Experts" about the impacts technology may have on professional work. And Nicholas Agar comes on to talk about his book "The Sceptical Optimist" and the ways new technologies will affect our perceptions and well-being.