A new lens for microscopy has been developed

November 08, 2018

BFU physicists suggested a new model of a variable focus lens called a mini transfocator. It may be used in microscopic research that requires compact and mobile optical systems. The development was supported by the Ministry of Education and Science with a grant (No. 14. Y26.31.0002). The results were published in the Microscopy and Microanalysis journal.

Lens optical systems and X-ray lenses are currently used in microscopy, for making high-resolution X-ray images, and for focusing X-rays to submicron scale. To focus X-rays one may change the number or the combination of lenses. To do so, scientists use variable focus lenses or transfocators. These are systems with adjustable lenses that can be removed or added to an X-ray beam to regulate the focus distance. The configuration of a transfocator is easily changeable, therefore it is used for initial focusing in combination with other focusing elements, and also as an independent focusing device in a beam.

"These are the methods we suggested and successfully promoted at the ESRF synchrotron in France and at the German PETRA-III synchrotron at DESY. But for them to work, we need light and mobile transfocators. They should be easy to install and to adjust in the direction of a scattered or diffracted beam," says Anatoly Snigirev, the supervisor of the "Coherent Optics" specialization and the head of the X-ray optics laboratory at the Immanuel Kant Baltic Federal University.

Traditional transfocators are quite heavy and cannot be used for X-ray visualization on site or for introscopy (non-invasive study of the structure and internal processes of biological objects). Moreover, gaps can occur between their cartridges. In such cases it becomes difficult to gradually change the focus distance as the lenses that are located close to each other and those spread along the beam will have different focus positioning. Mobile mini transfocators help to study the internal structure and peculiarities of biological samples and track changes in them. They are also used in the new area of studies called hard X-rays microscopy. The lens is used as an objective and shows the details of the sample with submicron or even nanometer resolution. This is especially relevant for studies carried out in extreme conditions (under high pressure or temperature) as well as for nondestructive studies of biological objects.

In the new transfocator model the lenses are attached individually on stacks and are located close to each other. Therefore, one lens can be easily removed or added, and the focus distance would change gradually. This type of construction is more compact and mobile. The length of the transfocator is 150 mm, the width - 100 mm, and the height - 90 mm, while its weight is less than 2 kg. Traditional transfocators depending on their function may be 0.5 to 1.5 m long and weigh from 20 to 100 kg. All materials and components are vacuum compatible and are manufactured using high-precision equipment. 50 independent lenses that stand in the way of the beam are moved by an electric engine.
-end-
The participants of the experimental studies also represented the European Molecular and Biological Laboratory in Hamburg (Germany) and the Research Accelerator Complex ESRF (European Synchrotron Radiation Facility) in Grenoble (France).

Immanuel Kant Baltic Federal University

Related Microscopy Articles from Brightsurf:

Ultracompact metalens microscopy breaks FOV constraints
As reported in Advanced Photonics, their metalens-integrated imaging device (MIID) exhibits an ultracompact architecture with a working imaging distance in the hundreds of micrometers.

Attosecond boost for electron microscopy
A team of physicists from the University of Konstanz and Ludwig-Maximilians-Universität München in Germany have achieved attosecond time resolution in a transmission electron microscope by combining it with a continuous-wave laser -- new insights into light-matter interactions.

Microscopy beyond the resolution limit
The Polish-Israeli team from the Faculty of Physics of the University of Warsaw and the Weizmann Institute of Science has made another significant achievement in fluorescent microscopy.

Quantum light squeezes the noise out of microscopy signals
Researchers at the Department of Energy's Oak Ridge National Laboratory used quantum optics to advance state-of-the-art microscopy and illuminate a path to detecting material properties with greater sensitivity than is possible with traditional tools.

Limitations of super-resolution microscopy overcome
The smallest cell structures can now be imaged even better: The combination of two microscopy methods makes fluorescence imaging with molecular resolution possible for the first time.

High-end microscopy refined
New details are known about an important cell structure: For the first time, two Würzburg research groups have been able to map the synaptonemal complex three-dimensionally with a resolution of 20 to 30 nanometres.

Developing new techniques to improve atomic force microscopy
Researchers from the University of Illinois at Urbana-Champaign have developed a new method to improve the noise associated with nanoscale chemical imaging using atomic force microscopy.

New discovery advances optical microscopy
New Illinois ECE research is advancing the field of optical microscopy, giving the field a critical new tool to solve challenging problems across many fields of science and engineering including semiconductor wafer inspection, nanoparticle sensing, material characterization, biosensing, virus counting, and microfluidic monitoring.

New microscopy method provides unprecedented look at amyloid protein structure
Neurodegenerative diseases such as Alzheimer's and Parkinson's are often accompanied by amyloid proteins in the brain that have become clumped or misfolded.

Novel 3D imaging technology makes fluorescence microscopy more efficient
A research team led by Dr Kevin Tsia from the University of Hong Kong (HKU), developed a new optical imaging technology -- Coded Light-sheet Array Microscopy (CLAM) -- which can perform 3D imaging at high speed, and is power efficient and gentle to preserve the living specimens during scanning at a level that is not achieved by existing technologies.

Read More: Microscopy News and Microscopy Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.