Nav: Home

Pore size alone does not matter when biological nanopores act as sugar chain biosensors

November 08, 2018

Protein nanopores are present in cell membranes and act as biological gateways. This means that they can also be used for the detection of specific bioactive molecular chains, like sugar chains, such as molecules from the glycosaminoglycan family. The latter are responsible for key interactions at the cellular level. They typically mediate interactions with cell surfaces or with proteins, resulting in the activiation of physiological and pathological effects in embryonic development, cell growth and differentiation, inflammatory response, tumour growth and microbial infection. The use of such nanopores as biosensors requires to fully understand the intricate mechanisms occurring as sugar chains pass through them. In a new study published in EPJ E, Aziz Fennouri from Paris-Saclay University in Evry, France, and colleagues outline the key criteria determining the effectiveness of two types of nanopores in the detection of sugar chains.

Specifically, the authors study how two 10 nanometre-wide protein nanopores--namely α-hemolysin (α-HL) from Staphylococcus aureus and aerolysin (AeL) from Aeromonas hydrophila--impact the ability of sugar chain components of large biomolecules, such as hyaluronic acid to pass through the nanopores.

The authors find that, when the sugar chains enter from the broad end of the funnel constituting each pore, AeL can be used to detect short sugar chains. By contrast, α-HL fails to detect such short chains because they cross the nanopore too quickly. The opposite happens when sugar chains are placed at the thin end of the funnel-shaped pore.

These results show that the choice of the nanopore used to carry out biosensing experiments is essential. Criteria other than the inner diameter of the pore need to be considered when devising biosensors to make then suited for detection. Other parameters to consider include the charge repartition within the pore, possible interactions occurring on the inner wall of the pore channel, and the geometry of the pore channel.
-end-
References: A. Fennouri, J. Ramiandrisoa, L. Bacri, J. Mathé, and R. Daniel (2018), Comparative Biosensing of Glycosaminoglycan Hyaluronic Acid Oligo- and Polysaccharides Using Aerolysin and α-Hemolysin Nanopores, Eur. Phys. Jour. E 41:127. DOI: 10.1140/epje/i2018-11733-5

Springer

Related Molecules Articles:

The inner lives of molecules
Researchers from Canada, the UK and Germany have developed a new experimental technique to take 3-D images of molecules in action.
Novel technique helps ID elusive molecules
Stuart Lindsay, a researcher at Arizona State University's Biodesign Institute, has devised a clever means of identifying carbohydrate molecules quickly and accurately.
How solvent molecules cooperate in reactions
Molecules from the solvent environment that at first glance seem to be uninvolved can be essential for chemical reactions.
A new way to display the 3-D structure of molecules
Berkeley Lab and UC Berkeley Researchers have developed nanoscale display cases that enables new atomic-scale views of hard-to-study chemical and biological samples.
Bending hot molecules
Hot molecules are found in extreme environments such as the edges of fusion reactors.
At attention, molecules!
University of Iowa chemists have learned about a molecular assembly that may help create quicker, more responsive touch screens, among other applications.
Folding molecules into screw-shaped structures
An international research team describes the methods of winding up molecules into screw-shaped structures.
Artificial molecules
A new method allows scientists at ETH Zurich and IBM to fabricate artificial molecules out of different types of microspheres.
Molecules that may keep you young and alive
A new study may have uncovered the fountain of youth: plant extracts containing the six best groups of anti-aging molecules ever seen.
Fun with Lego (molecules)
A great childhood pleasure is playing with LegosĀ® and marveling at the variety of structures you can create from a small number of basic elements.

Related Molecules Reading:

Molecules: The Elements and the Architecture of Everything
by Theodore Gray (Author), Nick Mann (Photographer)

Reactions: An Illustrated Exploration of Elements, Molecules, and Change in the Universe
by Theodore Gray (Author)

DMT: The Spirit Molecule: A Doctor's Revolutionary Research into the Biology of Near-Death and Mystical Experiences
by Rick Strassman (Author)

Molecules Of Emotion: The Science Behind Mind-Body Medicine
by Candace B. Pert (Author)

We Are All Made of Molecules
by Susin Nielsen (Author)

The Billion Dollar Molecule: One Company's Quest for the Perfect Drug
by Barry Werth (Author)

Elements: A Visual Exploration of Every Known Atom in the Universe
by Theodore Gray (Author), Nick Mann (Photographer)

Molecules That Changed the World
by K. C. Nicolaou (Author), Tamsyn Montagnon (Author)

The God Molecule: 5-MeO-DMT and the Spiritual Path to the Divine Light
by Gerardo Ruben Sandoval Dr. (Author), Martin W. Ball PhD (Introduction)

Best Science Podcasts 2018

We have hand picked the best science podcasts for 2018. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Where Joy Hides
When we focus so much on achievement and success, it's easy to lose sight of joy. This hour, TED speakers search for joy in unexpected places, and explain why it's crucial to a fulfilling life. Speakers include inventor Simone Giertz, designer Ingrid Fetell Lee, journalist David Baron, and musician Meklit Hadero.
Now Playing: Science for the People

#500 500th Episode
This week we turn 500! To celebrate, we're taking the opportunity to go off format, talk about the journey through 500 episodes, and answer questions from our lovely listeners. Join hosts Bethany Brookshire and Rachelle Saunders as we talk through the show's history, how we've grown and changed, and what we love about the Science for the People. Here's to 500 more episodes!