Nav: Home

We now know how RNA molecules are organized in cells

November 08, 2018

Working with colleagues in the U.S., a team of Université de Montreal researchers has for the first time visualized how RNA molecules are organized in cells.

In their study published in Molecular Cell, scientists at UdeM used super-resolution microscopy to investigate how the 3D organization of mRNAs changes depending on the location of these molecules in cells and show that a decades-old dogma requires revision.

"The flow of information from DNA to protein implicates a copy of the DNA sequence called messenger RNA that serves as template for protein synthesis," said the study's senior author Daniel Zenklusen, an associate professor at UdeM's department of biochemistry and molecular medicine. "Just like DNA, RNA is a long polymer composed of nucleic acids. How these RNA polymers are compacted and organized in cells to allow protein synthesis was so far unknown, in part because we were lacking technologies to visualize these molecules in high resolution," Zenklusen said.

It has long been thought that all messenger RNA, or mRNA, molecules acquire a specific conformation during protein synthesis: the two ends of the molecule coming together to form a stable so-called closed-loop complex. This new study shows that this long-standing model is oversimplified, according to Zenklusen and his team.

"We observed that messenger RNAs exist in many different configurations in cells, but not in the previously suggested stable closed-loop conformation," said the study's first author Srivathsan Adivarahan, a doctoral student in Zenklusen's lab. "This was very surprising to us since this model is found in every text book describing the essential process of protein synthesis."

In collaboration with the laboratories of Olivia Rissland at the University of Colorado and Bin Wu at Johns Hopkins University in Baltimore, the UdeM scientists found that the messenger RNAs of cells can exist in many conformations but mostly as very compact molecules. This is most pronounced when protein synthesis is suppressed or messenger RNAs are sequestered to specific subcellular compartments such as stress granules, compartments similar to pathologic aggregates often found in neurodegenerative diseases that form under conditions of environmental pressure on cells.

"Our findings change how we think about many aspects of mRNA metabolism, and in particular on how the mRNA is organized during protein synthesis," said Zenklusen. "Regulating this process is essential for all cells, but it is particularly important for a cancer cell that requires high levels of protein synthesis to allow for unceasing growth. Therefore, different drugs affecting proteins synthesis are currently in development and some of these drugs target proteins previously implicated in the closed-loop model. The models of how these drugs affect protein synthesis will have to be revisited."

The new study also illustrates the importance of basic science and the need to continuously develop new technologies, he added. "Technological advances allow us to revisit questions we long thought to have been solved, just to realize once we look at them with new eyes that we are far from truly understanding them."

One of the next steps in Zenklusen's laboratory is therefore to continue to advance the technological approaches that enabled these new findings - single molecule and super-resolution microscopy - in order to gain an even more detailed insight into the mechanisms of gene regulation and how it's misregulated in various diseases.
-end-
About the study

"Spatial organization of single mRNPs at different stages of the gene expression pathway," by Daniel Zenklusen et al, was published November 8, 2018, in Molecular Cell. The study was financed by the Canadian Institutes of Health Research, Fonds de recherche du Québec - Santé and the Canada Foundation for Innovation. doi: 10.1016/j.molcel.2018.10.010

University of Montreal

Related Dna Articles:

Zigzag DNA
How the cell organizes DNA into tightly packed chromosomes. Nature publication by Delft University of Technology and EMBL Heidelberg.
Scientists now know what DNA's chaperone looks like
Researchers have discovered the structure of the FACT protein -- a mysterious protein central to the functioning of DNA.
DNA is like everything else: it's not what you have, but how you use it
A new paradigm for reading out genetic information in DNA is described by Dr.
A new spin on DNA
For decades, researchers have chased ways to study biological machines.
From face to DNA: New method aims to improve match between DNA sample and face database
Predicting what someone's face looks like based on a DNA sample remains a hard nut to crack for science.
Self-healing DNA nanostructures
DNA assembled into nanostructures such as tubes and origami-inspired shapes could someday find applications ranging from DNA computers to nanomedicine.
DNA design that anyone can do
Researchers at MIT and Arizona State University have designed a computer program that allows users to translate any free-form drawing into a two-dimensional, nanoscale structure made of DNA.
DNA find
A Queensland University of Technology-led collaboration with University of Adelaide reveals that Australia's pint-sized banded hare-wallaby is the closest living relative of the giant short-faced kangaroos which roamed the continent for millions of years, but died out about 40,000 years ago.
DNA structure impacts rate and accuracy of DNA synthesis
DNA sequences with the potential to form unusual conformations, which are frequently associated with cancer and neurological diseases, can in fact slow down or speed up the DNA synthesis process and cause more or fewer sequencing errors.
Changes in mitochondrial DNA control how nuclear DNA mutations are expressed in cardiomyopathy
Differences in the DNA within the mitochondria, the energy-producing structures within cells, can determine the severity and progression of heart disease caused by a nuclear DNA mutation.
More DNA News and DNA Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Teaching For Better Humans 2.0
More than test scores or good grades–what do kids need for the future? This hour, TED speakers explore how to help children grow into better humans, both during and after this time of crisis. Guests include educators Richard Culatta and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#556 The Power of Friendship
It's 2020 and times are tough. Maybe some of us are learning about social distancing the hard way. Maybe we just are all a little anxious. No matter what, we could probably use a friend. But what is a friend, exactly? And why do we need them so much? This week host Bethany Brookshire speaks with Lydia Denworth, author of the new book "Friendship: The Evolution, Biology, and Extraordinary Power of Life's Fundamental Bond". This episode is hosted by Bethany Brookshire, science writer from Science News.
Now Playing: Radiolab

Space
One of the most consistent questions we get at the show is from parents who want to know which episodes are kid-friendly and which aren't. So today, we're releasing a separate feed, Radiolab for Kids. To kick it off, we're rerunning an all-time favorite episode: Space. In the 60's, space exploration was an American obsession. This hour, we chart the path from romance to increasing cynicism. We begin with Ann Druyan, widow of Carl Sagan, with a story about the Voyager expedition, true love, and a golden record that travels through space. And astrophysicist Neil de Grasse Tyson explains the Coepernican Principle, and just how insignificant we are. Support Radiolab today at Radiolab.org/donate.