Watch a 3D-engineered human heart tissue beat

November 08, 2018

Researchers have developed a way to grow human heart tissue that can serve as a model for the upper chambers of the heart, known as the atria. The tissue, derived from human induced pluripotent stem cells (hiPCSs), beats, expresses genes, and responds to drugs in a manner similar to a real human atrium. The model, described November 8 in the journal Stem Cell Reports, may be useful for evaluating disease mechanisms and drugs for atrial fibrillation--the most common type of arrhythmia.

In contrast to standard 2D culture, the stem-cell-derived cardiomyocytes were cultured in a way that they formed 3D beating heart tissue resembling atrial heart muscle. Specifically, the cells showed atrial-like gene expression, contractile force, contraction and relaxation kinetics, electrophysiological properties, and pharmacological responses to atrial-selective drugs. According to the authors, the engineered heart tissue could serve as a model of the human atrium for both mechanistic studies of atrial fibrillation and for preclinical drug screening.

"This is the first time that human atrial heart tissue has been generated in vitro from a principally unlimited source of hiPSCs," says first author Marta Lemme of the University Medical Center Hamburg-Eppendorf. "This could be useful both for academic laboratories and the pharmaceutical industry, because to test potential new drugs, we need to generate an in vitro model of atrial fibrillation. And the first step in that is to obtain cells that resemble human atrial cardiomyocytes," Lemme says.

Lemme and senior study author Thomas Eschenhagen of the University Medical Center Hamburg-Eppendorf set out to achieve this goal by generating atrial-like cardiomyocytes from hiPSCs using a vitamin A metabolite called all-trans retinoic acid. This technique involves genetically reprogramming blood or skin cells taken from human donors to an embryonic stem-cell-like state and then treating these immature cells with all-trans retinoic acid to convert them into atrial-like cardiomyocytes.

"But the novelty of this study is the combination of hiPSC differentiation into atrial cardiomyocytes with a 3D environment," Lemme says. "In fact, we showed that the 3D environment favors the differentiation toward an atrial phenotype compared to standard 2D culture. A particular value of our study is the direct comparison of our 3D engineered heart tissue with native human atrial tissue obtained from patients on a molecular and functional level."

More than 33 million people worldwide suffer from atrial fibrillation, and the prevalence is rising. Uncoordinated high-frequency contractions in the atria increase the risk for blood clots, stroke, and heart failure. Unfortunately, existing treatments such as antiarrhythmic drugs have limited efficacy and can cause adverse effects. Moreover, the development of new drugs has been hindered by the difficulty in isolating and maintaining human atrial cardiomyocytes, or heart muscle cells. Animal models have limited predictive power because they do not accurately represent the physiology of human cardiomyocytes.

"These atrial muscle strips represent a great opportunity to model atrial fibrillation in the dish and test drugs," Lemme says. "Nevertheless, improvements can still be made to reach even higher similarity with the human atrial tissue. For us, the next step is to test various means to induce arrhythmias, study mechanisms of electrical remodeling of atrial fibrillation and test new potential drugs."
-end-
This research was supported by AFib-TrainNet, the National Research, Development and Innovation Office, the German Ministry of Education and Research (BMBF) and German Centre for Cardiovascular Research, the European Research Council (ERC AG IndivuHeart), the Deutsche Forschungsgemeinschaft, and Leducq Fondation. Thomas Eschenhagen and Arne Hansen are co-founders of EHT Technologies, Hamburg. Godfrey Smith is a founder and executive of Clyde Biosciences Ltd (UK).

Stem Cell Reports, Lemme et al.: "Atrial-like Engineered Heart Tissue: An In Vitro Model of the Human Atrium" https://www.cell.com/stem-cell-reports/fulltext/S2213-6711(18)30431-4

Stem Cell Reports, published by Cell Press for the International Society for Stem Cell Research (@ISSCR), is a monthly open-access forum communicating basic discoveries in stem cell research, in addition to translational and clinical studies. The journal focuses on shorter, single-point manuscripts that report original research with conceptual or practical advances that are of broad interest to stem cell biologists and clinicians. Visit http://www.cell.com/stem-cell-reports. To receive Cell Press media alerts, please contact press@cell.com.

Cell Press

Related Atrial Fibrillation Articles from Brightsurf:

Atrial fibrillation less deadly than it used to be, but still cause for concern: BU study
A first-of-its-kind study by researchers from the Boston University School of Public Health (BUSPH) shows a decline in deaths related to atrial fibrillation (irregular heartbeat) over the last 45 years.

Postoperative atrial fibrillation does not impact on overall survival after esophagectomy
Volume 11, Issue 25 of Oncotarget reported that Administration of landiolol hydrochloride was found to be associated with reduced incidence of atrial fibrillation after esophagectomy for esophageal cancer in our previous randomized controlled trial.

People with atrial fibrillation live longer with exercise
More than 100,000 Norwegians have atrial fibrillation. They should be actively exercising for their health.

Atrial fibrillation among overweight people is not due to fat
In a recently published study, researchers from Aarhus University document that the risk of atrial fibrillation is not linked to the amount of body fat, but instead to large muscle mass, or more precisely, a high fat-free weight

Eating more protein could help ward off atrial fibrillation in women
Women who ate slightly more than the recommended daily amount of protein were significantly less likely to develop atrial fibrillation (AFib), a dangerous heart rhythm disorder that can lead to stroke and heart failure, when compared with those who consumed less protein, according to research being presented at the American College of Cardiology's Annual Scientific Session Together with World Congress of Cardiology (ACC.20/WCC).

Zebrafish teach researchers more about atrial fibrillation
Genetic research in zebrafish at the University of Copenhagen has surprised the researchers behind the study.

Personalized medicine for atrial fibrillation
The study, published in Europace, uses signals from implantable devices -- pacemakers and defibrillators -- to analyze electrical signals in the heart during episodes of atrial fibrillation.

Prescribing anticoagulants in the ED for atrial fibrillation increases long-term use by 30%
Patients prescribed anticoagulants after a diagnosis of atrial fibrillation in the emergency department are more likely to continue long-term use of medications to treat the condition, according to research published in CMAJ (Canadian Medical Association Journal).

Anticoagulant benefits for atrial fibrillation decrease with age
The net clinical benefit of anticoagulants for atrial fibrillation (AF) -- one of the most important causes of irregular heartbeats and a leading cause of stroke -- decreases with age, as the risk of death from other factors diminishes their benefit in older patients, according to a study led by researchers at UC San Francisco.

Research improves understanding of mechanism of atrial fibrillation
Mouse model studies show that noncoding DNA regions linked to atrial fibrillation risk can display long-range regulatory functions directed at Pitx2 gene and in this way predispose to the condition.

Read More: Atrial Fibrillation News and Atrial Fibrillation Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.