Nav: Home

Harvesting renewable energy from the sun and outer space at the same time

November 08, 2018

Scientists at Stanford University have demonstrated for the first time that heat from the sun and coldness from outer space can be collected simultaneously with a single device. Their research, published November 8 in the journal Joule, suggests that devices for harvesting solar and space energy will not compete for land space and can actually help each other function more efficiently.

Renewable energy is increasingly popular as an economical and efficient alternative to fossil fuels, with solar energy topping charts as the worldwide favorite. But there is another powerful energy source overhead that can perform just the opposite function--outer space.

"It is widely recognized that the sun is a perfect heat source nature offers human beings on Earth," says Zhen Chen, the first author of the study, who is a former postdoctoral research associate at Stanford in the group of Shanhui Fan and is currently a professor at the Southeast University of China. "It is less widely recognized that nature also offers human beings outer space as a perfect heat sink."

Objects give off heat as infrared radiation--a form of light invisible to the human eye. Most of this radiation is reflected back to Earth by particles in the atmosphere, but some of it escapes into space, allowing surfaces that emit enough radiation within the infrared range to drop below the temperature of their surroundings. Radiative cooling technology reflects copious amounts of infrared light, providing an air conditioning alternative that doesn't emit greenhouse gases. It may also help improve solar cell efficiency, which decreases the hotter solar cells become--if only the two technologies can coexist peacefully on one rooftop.

Chen and his colleagues developed a device combining radiative cooling with solar absorption technology. The device consists of a germanium solar absorber on top of a radiative cooler with silicon nitride, silicon, and aluminum layers enclosed in a vacuum to minimize unwanted heat loss. Both the solar absorber and the atmosphere are transparent in the mid-infrared range of 8-13 microns, offering a channel for infrared radiation from the radiative cooler to pass through to outer space. The team demonstrated that the combined device can simultaneously provide 24?C in solar heating and 29?C in radiative cooling, with the solar absorber improving the radiative cooler's performance by blocking heat from the sun.

"On a rooftop, we imagine a photovoltaic cell can supply electricity while the radiative cooler can cool down the house on hot summer days," says Chen.

While this technology appears promising, Chen believes there is still plenty of work to do before it can be scaled up for commercial use. While the vacuum enveloping the device could be scaled up with relative ease, the infrared-transparent window made from zinc selenide is still too costly, and the solar absorber and radiative cooler could be designed from cheaper high-performing materials as well. Chen thinks it is also important to test the use of photovoltaic cells in the place of a solar absorber--an idea which has yet to be demonstrated. But in spite of all these practical challenges, the team believes this research demonstrates that renewable energy has even more rooftop potential than previously thought.

"I think this technology could potentially revolutionize the current solar cell technology," says Chen. "If our concept is demonstrated and scaled up, the future solar cell will have two functions in one: electricity and cooling."
-end-
This research was funded by the Global Climate and Energy Project (GCEP) at Stanford University, the National Science Foundation, the National Natural Science Foundation of China, and the Fundamental Research Funds for the Central Universities.

Joule, Chen et al.: "Simultaneously and Synergistically Harvest Energy from the Sun and Outer Space" https://www.cell.com/joule/fulltext/S2542-4351(18)30471-9

Joule (@Joule_CP) published monthly by Cell Press, is a new home for outstanding and insightful research, analysis, and ideas addressing the need for more sustainable energy. A sister journal to Cell, Joule spans all scales of energy research, from fundamental laboratory research into energy conversion and storage up to impactful analysis at the global level. Visit: http://www.cell.com/joule. To receive Cell Press media alerts, contact press@cell.com.

Cell Press

Related Renewable Energy Articles:

Cold conversion of food waste into renewable energy and fertilizer
Researchers from Concordia's Department of Building, Civil and Environmental Engineering (BCEE) in collaboration with Bio-Terre Systems Inc. are taking the fight against global warming to colder climes.
Researchers offer novel method for calculating the benefits of renewable energy
Researchers from the Higher School of Economics (HSE) have developed a novel system for assessing the potential of renewable energy resources.
Renewable energy needed to drive uptake of electric vehicles
Plugging into renewable energy sources outweighs the cost and short driving ranges for consumers intending to buy electric vehicles, according to a new study.
Renewable energy has robust future in much of Africa
Africa's energy demand is expected to triple by 2030. A new Berkeley study shows that the continent's energy needs can be met with renewable power from wind and solar in a way that reduces reliance on undependable hydroelectric power and imported fossil fuels, while at the same time saving money and providing jobs.
100 percent renewable energy sources require overcapacity
Germany decided to go nuclear-free by 2022. A CO2-emission-free electricity supply system based on intermittent sources, such as wind and solar -- or photovoltaic (PV) -- power could replace nuclear power.
Biofuel matchmaker: Finding the perfect algae for renewable energy
A new streamlined process could quickly pare down heaps of algae species into just a few that hold the most promise for making biofuel.
UChicago startup turns renewable energy into natural gas
One of the biggest challenges to wider adoption of wind and solar power is how to store the excess energy they often produce.
Improved water splitting advances renewable energy conversion
Washington State University researchers have found a way to more efficiently create hydrogen from water -- an important key in making renewable energy production and storage viable.
Research targets conflict over wind farming and renewable energy in Korea
Griffith University is undertaking a major international project to help address community conflict and disruption over wind farms and their implementation in Korea.
Move over, solar: The next big renewable energy source could be at our feet
Flooring can be made from any number of sustainable materials, making it, generally, an eco-friendly feature in homes and businesses alike.

Related Renewable Energy Reading:

Renewable Energy: Power for a Sustainable Future
by Stephen Peake (Editor)

Renewable Energy Finance: Powering The Future
by Charles W Donovan (Editor)

Renewable Energy Integration: Practical Management of Variability, Uncertainty, and Flexibility in Power Grids
by Lawrence E. Jones (Author)

Renewable Energy: Power for a Sustainable Future
by Godfrey (edit). Boyle (Author)

Renewable Energy: A Primer for the Twenty-First Century (Columbia University Earth Institute Sustainability Primers)
by Columbia University Press

Introduction to Renewable Energy (Energy and the Environment)
by Vaughn C. Nelson (Author), Kenneth L. Starcher (Author)

Renewable Energy: Power for a Sustainable Future
by Godfrey Boyle (Author)

Fundamentals of Renewable Energy Processes
by Aldo V. Da Rosa (Author)

Solar Energy: The Physics and Engineering of Photovoltaic Conversion, Technologies and Systems
by UIT Cambridge Ltd.

Renewable Energy Engineering
by Nicholas Jenkins (Author), Janaka Ekanayake (Author)

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Approaching With Kindness
We often forget to say the words "thank you." But can those two words change how you — and those around you — look at the world? This hour, TED speakers on the power of gratitude and appreciation. Guests include author AJ Jacobs, author and former baseball player Mike Robbins, Dr. Laura Trice, Professor of Management Christine Porath, and former Danish politician Özlem Cekic.
Now Playing: Science for the People

#509 Anisogamy: The Beginning of Male and Female
This week we discuss how the sperm and egg came to be, and how a difference of reproductive interest has led to sexual conflict in bed bugs. We'll be speaking with Dr. Geoff Parker, an evolutionary biologist credited with developing a theory to explain the evolution of two sexes, about anisogamy, sexual reproduction through the fusion of two different gametes: the egg and the sperm. Then we'll speak with Dr. Roberto Pereira, research scientist in urban entomology at the University of Florida, about traumatic insemination in bed bugs.