Nav: Home

Warming waters caused rapid -- and opposite -- shifts in connected marine communities

November 08, 2018

Two connected marine ecosystems--the Eastern English Channel and Southern North Sea--experienced big and opposite changes in their fish communities over a 30-year period, according to researchers who report their findings in Current Biology on November 8. Rapid warming drove smaller ocean fishes to shift abruptly northward from one ecosystem to the other.

This inversion in the structure of the two ecosystems also caused a big switch in the way those connected ecosystems functioned. Ecosystem function refers to the way an assemblage of species together with inorganic materials operate as a larger whole to influence biological, geochemical, and physical processes. Changes in the structure and function of an ecosystem can, for example, alter the rate of carbon uptake from the atmosphere or the rate at which organic materials are broken down.

The findings suggest that the expected increase in the frequency and severity of climate oscillations and extreme warming events could trigger shifts in the distribution and abundance of species with profound consequences for the way ecosystems around the world function, the researchers say.

"This warming caused an abrupt change in fish communities as small, rapidly maturing fishes, particularly pelagic fishes, simultaneously decreased in the English Channel and increased in the North Sea," says Matthew McLean of IFREMER, Boulogne-sur-Mer, France. "This suggests both that fishes shifted northward between the ecosystems and that the English Channel became an unfavorable environment for certain fishes while the North Sea became a more favorable environment."

In the mid-1990s, a natural climate oscillation called the "Atlantic Multidecadal Oscillation" switched from a cool to a warm phase, producing warmer sea surfaces throughout the Atlantic Ocean. McLean and colleagues realized that the majority of studies examining the impacts of such warming on fishes have focused on changes in particular species, often focusing on commercial fishery species.

In the new study, the researchers took a newer approach to factor in the characteristics of particular species that explain how they respond to changes in the environment and what roles they play in the ecosystem. "Surprisingly few studies have used this approach to understand how rapid warming can affect marine ecosystems and how shifts in fish abundances and distributions can impact ecosystem functioning," McLean says.

The researchers used over 30 years of fish monitoring data and an extensive compilation of ecological traits to examine the dynamics of fish functional structure in the Eastern English Channel and Southern North Sea. They characterized functional structure using ten traits related to life history, habitat use, and feeding ecology for 73 fish species in the English Channel and 110 in the North Sea.

While the researchers weren't surprised to find changes in species' abundances and distributions in response to human impacts and warming, they were surprised to find an inverse shift in entire fish communities within connected ecosystems. They were also surprised by the exceptional speed of those changes, as the "functional inversion" occurred only one or two years after a major temperature rise. Their data also suggest that the influence of fishing was minor in comparison to the effects of warming.

The findings suggest that warming events in the future could have major and long-lasting impacts on marine ecosystems and fisheries. The researchers say that the results of the new study could be used to anticipate how other marine ecosystems may change under future warming.

"We must plan for rapid changes in fish communities between ecosystems, particularly as species shift poleward," McLean says.
-end-
This research was supported by Électricité de France, IFREMER, Région Hauts-de-France, and the Foundation for Research on Biodiversity.

Current Biology, McLean et al.: "A Climate-Driven Functional Inversion of Connected Marine Ecosystems" https://www.cell.com/current-biology/fulltext/S0960-9822(18)31275-2

Current Biology (@CurrentBiology), published by Cell Press, is a bimonthly journal that features papers across all areas of biology. Current Biology strives to foster communication across fields of biology, both by publishing important findings of general interest and through highly accessible front matter for non-specialists. Visit: http://www.cell.com/current-biology. To receive Cell Press media alerts, contact press@cell.com.

Cell Press

Related Ecosystems Articles:

Rethinking role of viruses in coral reef ecosystems
Viruses are thought to frequently kill their host bacteria, especially at high microbial density.
Sequestering blue carbon through better management of coastal ecosystems
Focusing on the management of carbon stores within vegetated coastal habitats provides an opportunity to mitigate some aspects of global warming.
Tiny bacterium provides window into whole ecosystems
MIT research on Prochlorococcus, the most abundant life form in the oceans, shows the bacteria's metabolism evolved in a way that may have helped trigger the rise of other organisms, to form a more complex marine ecosystem with overall greater biomass.
Road salt alternatives alter aquatic ecosystems
Organic additives found in road salt alternatives -- such as those used in the commercial products GeoMelt and Magic Salt -- act as a fertilizer to aquatic ecosystems, promoting the growth of algae and organisms that eat algae, according to new research published today in the Journal of Applied Ecology.
Marine ecosystems show resilience to climate disturbance
Climate change is one of the most powerful stressors threatening marine biomes.
Ecosystems in the southeastern US are vulnerable to climate change
At least several southeastern US ecosystems are highly vulnerable to the impacts of present and future climate change, according to two new USGS reports on research conducted by scientists with Interior Department's Southeast Climate Science Center.
Islands and their ecosystems
Juliano Sarmento Cabral comes from a country with a tropical-subtropical climate.
Restoring ecosystems -- how to learn from our mistakes
In a joint North European and North American study led by Swedish researcher Christer Nilsson, a warning is issued of underdocumented results of ecological restorations.
Beach replenishment may have 'far reaching' impacts on ecosystems
UC San Diego biologists who examined the biological impact of replenishing eroded beaches with offshore sand found that such beach replenishment efforts could have long-term negative impacts on coastal ecosystems.
Overfishing increases fluctuations in aquatic ecosystems
Overfishing reduces fish populations and promotes smaller sizes in fish.

Related Ecosystems Reading:

Ecosystems (Science Readers: Content and Literacy)
by Teacher Created Materials (Author)

The Wondrous Workings of Planet Earth: Understanding Our World and Its Ecosystems
by Rachel Ignotofsky (Author)

What If There Were No Bees?: A Book About the Grassland Ecosystem (Food Chain Reactions)
by Suzanne Slade (Author), Carol Schwartz (Illustrator)

Ecosystems Gr. 5-8 (Ecology & the Environment) - Classroom Complete Press
by Angela Wagner (Author)

Principles of Terrestrial Ecosystem Ecology
by F Stuart Chapin III (Author), Pamela A. Matson (Author), Peter Vitousek (Author), M.C. Chapin (Illustrator)

Aliens from Earth: When Animals and Plants Invade Other Ecosystems
by Mary Batten (Author), Beverly Doyle (Illustrator)

How Ecosystems Work (My Science Library)
by Julie Lundgren (Author)

The Farm as Ecosystem
by Jerry Brunetti (Author)

Ecosystems of Florida
by Ronald L. Myers (Editor), John J. Ewel (Editor)

Ecosystem (Ecosystem Trilogy Book 1)
by Mostly Wind Books

Best Science Podcasts 2018

We have hand picked the best science podcasts for 2018. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Where Joy Hides
When we focus so much on achievement and success, it's easy to lose sight of joy. This hour, TED speakers search for joy in unexpected places, and explain why it's crucial to a fulfilling life. Speakers include inventor Simone Giertz, designer Ingrid Fetell Lee, journalist David Baron, and musician Meklit Hadero.
Now Playing: Science for the People

#500 500th Episode
This week we turn 500! To celebrate, we're taking the opportunity to go off format, talk about the journey through 500 episodes, and answer questions from our lovely listeners. Join hosts Bethany Brookshire and Rachelle Saunders as we talk through the show's history, how we've grown and changed, and what we love about the Science for the People. Here's to 500 more episodes!