Nav: Home

Powerful method probes small-molecule structures

November 08, 2018

Small molecules -- from naturally occurring metabolites and hormones to synthetic medicines and pesticides -- can have big effects on living things. But for scientists to understand how the molecules work and how to design beneficial ones, they need to know the precise arrangement of atoms and chemical bonds. Now researchers have found a faster, simpler and potentially more reliable way to solve the structures of small molecules. They report their results in ACS Central Science.

Currently, the gold standard for determining small-molecule structures is X-ray crystallography. In this technique, researchers crystallize a small molecule and then bombard the crystal with X-rays, which diffract in complex patterns that reveal the molecule's 3D structure. However, producing large, high-quality crystals is time-consuming or impossible for many compounds. Brian Stoltz, Jose Rodriguez, Hosea Nelson and Tamir Gonen wondered if they could use a form of cryoelectron microscopy to characterize small molecules. Known as microcrystal-electron diffraction (MicroED), this technique was developed 5 years ago to study protein structures. In this technique, electron beams, instead of X-rays, are diffracted from crystals, which can be much smaller than those required for X-ray crystallography.

The researchers first tested MicroED on a sample of powdered progesterone, which contained thousands of nanocrystals. They rotated a single crystal and collected electron diffraction data from different angles, determining the structure of the hormone at high resolution (1 angstrom) in less than 30 minutes, compared with weeks or months for X-ray crystallography. They went on to successfully characterize 11 other natural, synthetic and pharmaceutical products, including acetaminophen, ibuprofen and several antibiotics. The researchers even identified four different molecules in a mixture by studying individual nanocrystals. Using MicroED, the researchers analyzed crystals that were a billionth of the size typically needed for X-ray crystallography. The rapid, precise method has the potential to greatly accelerate research in the fields of synthetic chemistry, natural product chemistry and drug discovery, the researchers say.
-end-
The authors acknowledge funding from the National Science Foundation, the National Institute of General Medical Sciences, the Department of Energy, the Arnold and Mabel Beckman Foundation, the Searle Scholars Program, Pew Charitable Trusts, the David and Lucile Packard Foundation, the Alfred P. Sloan Foundation and the Howard Hughes Medical Institute.

The study is freely available as an ACS AuthorChoice article here.

The American chemical Society, the world's largest scientific society, is a not-for-profit organization chartered by the U.S. Congress. ACS is a global leader in providing access to chemistry-related information and research through its multiple databases, peer-reviewed journals and scientific conferences. ACS does not conduct research, but publishes and publicizes peer-reviewed scientific studies. Its main offices are in Washington, D.C., and Columbus, Ohio.

To automatically receive news releases from the American Chemical Society, contact newsroom@acs.org.

Follow us on Twitter | Facebook

American Chemical Society

Related Nanocrystals Articles:

Development of low-dimensional nanomaterials could revolutionize future technologies
Javier Vela, scientist at the US Department of Energy's Ames Laboratory, believes improvements in computer processors, TV displays and solar cells will come from scientific advancements in the synthesis of low-dimensional nanomaterials.
Researchers demonstrate spin effects in solution-based nanocrystals
Wet-chemically produced nanocrystals are becoming more and more powerful. Now a research group around Dr.
Plasmon-powered upconversion nanocrystals for enhanced bioimaging and polarized emission
Rare-earth-doped nanocrystals have become sought-after materials for cellular bioprobes because of their long emission lifetimes and low cytotoxicity.
Researchers create first significant examples of optical crystallography for nanomaterials
Researchers at the University of Illinois at Urbana-Champaign have developed a novel way to determine crystal type based on optics -- by identifying the unique ways in which these crystals absorb light.
Direct determination of bandgap energy of single cesium lead bromide nanocrystals
An international research group determined directly the relation between the bandgap energy of single cesium lead bromide nanocrystals and their size and shape.
Nanocellulose in medicine and green manufacturing
American University professor develops method to improve functionality of nanocellulose.
Nanoscale confinement leads to new all-inorganic perovskite with exceptional solar cell properties
Scientists with the Energy Department's National Renewable Energy Laboratory for the first time discovered how to make perovskite solar cells out of quantum dots and used the new material to convert sunlight to electricity with 10.77 percent efficiency.
Wi-fi from lasers
New fabrication of white light makes data transfer up to 20x faster.
Solar cells for greener and safer energies
ICFO researchers report on low-temperature, solution-processed, environmentally friendly inorganic solar cells made with Earth-abundant materials capable of operating with a power conversion of 6.3 percent.
Novel capping strategy improves stability of perovskite nanocrystals
Perovskite materials have shown great promise for use in next-generation solar cells and LEDs, but their instability remains a critical limitation.

Related Nanocrystals Reading:

Nanocrystal Quantum Dots (Laser and Optical Science and Technology)
by CRC Press

Cellulose Nanocrystals: Properties, Production and Applications (Wiley Series in Renewable Resource)
by Wadood Y. Hamad (Author)

Optical Properties Semi Nanocrystal (Cambridge Studies in Modern Optics)
by S. V. Gaponenko (Author)

Light Alloys: From Traditional Alloys to Nanocrystals
by Ian Polmear (Author)

Introductory Quantum Mechanics with MATLAB: For Atoms, Molecules, Clusters, and Nanocrystals
by James R. Chelikowsky (Author)

Crystallization and Growth of Colloidal Nanocrystals (SpringerBriefs in Materials)
by Edson Roberto Leite (Author), Caue Ribeiro (Author)

Solar Cells Based on Colloidal Nanocrystals (Springer Series in Materials Science)
by Holger Borchert (Author)

Polysaccharide-Based Nanocrystals: Chemistry and Applications
by Jin Huang (Author), Peter R. Chang (Author), Ning Lin (Author), Alain Dufresne (Author)

Silicon Nanocrystals: Fundamentals, Synthesis and Applications
by Lorenzo Pavesi (Editor), Rasit Turan (Editor)

Semiconductor Nanocrystal Quantum Dots: Synthesis, Assembly, Spectroscopy and Applications
by Andrey Rogach (Editor)

Best Science Podcasts 2018

We have hand picked the best science podcasts for 2018. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Where Joy Hides
When we focus so much on achievement and success, it's easy to lose sight of joy. This hour, TED speakers search for joy in unexpected places, and explain why it's crucial to a fulfilling life. Speakers include inventor Simone Giertz, designer Ingrid Fetell Lee, journalist David Baron, and musician Meklit Hadero.
Now Playing: Science for the People

#500 500th Episode
This week we turn 500! To celebrate, we're taking the opportunity to go off format, talk about the journey through 500 episodes, and answer questions from our lovely listeners. Join hosts Bethany Brookshire and Rachelle Saunders as we talk through the show's history, how we've grown and changed, and what we love about the Science for the People. Here's to 500 more episodes!