Nav: Home

Catalyzing CO2

November 08, 2018

Imagine a day when - rather than being spewed into the atmosphere - the gases coming from power plants and heavy industry are instead captured and fed into catalytic reactors that chemically transform greenhouse gases like carbon dioxide into industrial fuels or chemicals and that emit only oxygen.

It's a future that Haotian Wang says may be closer than many realize.

A Fellow at the Rowland Institute at Harvard, Wang and colleagues have developed an improved system to use renewable electricity to reduce carbon dioxide into carbon monoxide - a key commodity used in a number of industrial processes. The system is described in a November 8 paper published in Joule, a newly launched sister journal of Cell press.

"The most promising idea may be to connect these devices with coal-fired power plants or other industry that produces a lot of CO2," Wang said. "About 20 percent of those gases are CO2, so if you can pump them into this cell...and combine it with clean electricity, then we can potentially produce useful chemicals out of these wastes in a sustainable way, and even close part of that CO2 cycle."

The new system, Wang said, represents a dramatic step forward from the one he and colleagues first described in a 2017 paper in Chem.

Where that old system was barely the size of a cell phone and relied on two electrolyte-filled chambers, each of which held an electrode, the new system is cheaper and relies on high concentrations of CO2 gas and water vapor to operate more efficiently - just one 10-by-10-centimeter cell, Wang said, can produce as much as four liters of CO per hour.

The new system, Wang said, addresses the two main challenges - cost and scalability - that were seen as limiting the initial approach.

"In that earlier work, we had discovered the single nickel-atom catalysts which are very selective for reducing CO2 to CO...but one of the challenges we faced was that the materials were expensive to synthesize," Wang said. "The support we were using to anchor single nickel atoms was based on graphene, which made it very difficult to scale up if you wanted to produce it at gram or even kilogram scale for practical use in the future."

To address that problem, he said, his team turned to a commercial product that's thousands of times cheaper than graphene as an alternative support - carbon black.

Using a process similar to electrostatic attraction, Wang and colleagues are able to absorb single nickel atoms (positively charged) into defects (negatively charged) in carbon black nanoparticles, with the resulting material being both low-cost and highly selective for CO2 reduction.

"Right now, the best we can produce is grams, but previously we could only produce milligrams per batch," Wang said. "But this is only limited by the synthesis equipment we have; if you had a larger tank, you could make kilograms or even tons of this catalyst."

The other challenge Wang and colleagues had to overcome was tied to the fact that the original system only worked in a liquid solution.

The initial system worked by using an electrode in one chamber to split water molecules into oxygen and protons. As the oxygen bubbled away, protons conducted through the liquid solution would move into the second chamber, where - with the help of the nickel catalyst - they would bind with CO2 and break the molecule apart, leaving CO and water. That water could then be fed back into the first chamber, where it would again be split, and the process would start again.

"The problem was that, the CO2 we can reduce in that system are only those dissolved in water; most of the molecules surrounding the catalyst were water," he said. "There was only a trace amount of CO2, so it was pretty inefficient."

While it may be tempting to simply increase the voltage applied on the catalyst to increase the reaction rate, that can have the unintended consequence of splitting water, not reducing CO2, Wang said.

"If you deplete the CO2 that's close to the electrode, other molecules have to diffuse to the electrode, and that takes time," Wang said. "But if you're increasing the voltage, it's more likely that the surrounding water will take that opportunity to react and split into hydrogen and oxygen."

The solution proved to be relatively simple - to avoid splitting water, the team took the catalyst out of solution.

"We replaced that liquid water with water vapor, and feed in high-concentration CO2 gas," he said. "So if the old system was more than 99 percent water and less than 1 percent CO2, now we can completely reverse that, and pump 97 percent CO2 gas and only 3 percent water vapor into this system. Before those liquid water also functions as ion conductors in the system, and now we use ion exchange membranes instead to help ions move around without liquid water.

"The impact is that we can deliver an order of magnitude higher current density," he continued. "Previously, we were operating at about ten milliamps-per-centimeter squared, but today we can easily ramp up to 100 milliamps."

Going forward, Wang said, the system still has challenges to overcome - particularly related to stability.

"If you want to use this to make an economic or environmental impact, it needs to have a continuous operations of thousands of hours," he said. "Right now, we can do this for tens of hours, so there's still a big gap, but I believe those problems can be addressed with more detailed analysis of both the CO2 reduction catalyst and the water oxidation catalyst."

Ultimately, Wang said, the day may come when industry will be able to capture the CO2 that is now released into the atmosphere and transform it into useful products.

"Carbon monoxide is not a particularly high value chemical product," Wang said. "To explore more possibilities, my group has also developed several copper-based catalysts that can further reduce CO2 into products that are much more valuable."

Wang credited the freedom he enjoyed at the Rowland Institute for helping lead to breakthroughs like the new system.

"Rowland has provided me, as an early career researcher, a great platform for independent research, which initiates a large portion of the research directions my group will continue to push forward," said Wang, who recently accepted a position at Rice University. "I will definitely miss my days here."
-end-
This research is supported with funding from the Rowland Fellows Program, the Center for Nanoscale Systems, NSERC, the National Research Council Canada, the Canadian Institutes of Health Research, the Province of Saskatchewan, Western Economic Diversification Canada, the University of Saskatchewan, the National Science Foundation, the China Scholarship Council and Rice University.

Harvard University

Related Power Plants Articles:

Plants at the pump
Regular, unleaded or algae? That's a choice drivers could make at the pump one day.
System automatically detects cracks in nuclear power plants
A new automated system detects cracks in the steel components of nuclear power plants and has been shown to be more accurate than other automated systems.
Campus natural gas power plants pose no radon risks
When Penn State decided to convert its two power plants from their historic use of coal as a source of energy to natural gas, there was concern about radon emissions.
More power to you
Engineers from the University of Utah and the University of Minnesota have discovered that interfacing two particular oxide-based materials makes them highly conductive, a boon for future electronics that could result in much more power-efficient laptops, electric cars and home appliances that also don't need cumbersome power supplies.
Pea plants demonstrate ability to 'gamble' -- a first in plants
An international team of scientists from Oxford University, UK, and Tel-Hai College, Israel, has shown that pea plants can demonstrate sensitivity to risk -- namely, that they can make adaptive choices that take into account environmental variance, an ability previously unknown outside the animal kingdom.
Household fuels exceed power plants and cars as source of smog in Beijing
New research indicates that the Chinese government could achieve dramatic air quality improvements in Beijing and surrounding areas with more attention on an overlooked source of outdoor pollution -- residential cooking and heating.
A 'Fitbit' for plants?
Knowing what physical traits a plant has is called phenotyping.
'Pee power' turns urine into sustainable power source for electronic devices
Researchers at the University of Bath have developed an innovative miniature fuel cell that can generate electricity from urine, creating an affordable, renewable and carbon-neutral way of generating power.
Desalination plants a 'hidden asset' for power, water
Generating hydropower from infrequently used desalination plants would create economic and environmental benefits for our biggest cities, according to research led by Griffith University's Dr.
Plant-inspired power plants
A team of chemical engineers at the University of Pittsburgh recently identified the two main factors for determining the optimal catalyst for turning atmospheric CO2 into liquid fuel.

Related Power Plants Reading:

Power Plants: Simple Home Remedies You Can Grow
by Frankie Flowers (Author), Bryce Wylde (Author)

Combined-Cycle Gas & Steam Turbine Power Plants
by Rolf Kehlhofer (Author), Bert Rukes (Author), Frank Hannemann (Author), Franz Stirnimann (Author)

The Power of a Plant: A Teacher's Odyssey to Grow Healthy Minds and Schools
by Stephen Ritz (Author), Suzie Boss (Author)

The Plantpower Way: Whole Food Plant-Based Recipes and Guidance for The Whole Family
by Rich Roll (Author), Julie Piatt (Author)

Power of Plants: How Food and Cannabis Helped Me Heal
by Bainti Parmar (Author)

The Giza Power Plant : Technologies of Ancient Egypt
by Christopher Dunn (Author)

Plants of the Gods: Their Sacred, Healing, and Hallucinogenic Powers
by Richard Evans Schultes (Author), Albert Hofmann (Author), Christian R├Ątsch (Author)

Amazing Plant Powers: How Plants Fly, Fight, Hide, Hunt, and Change the World
by Loreen Leedy (Author), Andrew Schuerger (Author)

Wind Power Plant: Provide Your Homestead with Energy from DIY Wind Turbine: (Energy Independence, Lower Bills & Off Grid Living)

The Power Plant
by Wes Writers and Publishers

Best Science Podcasts 2018

We have hand picked the best science podcasts for 2018. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Where Joy Hides
When we focus so much on achievement and success, it's easy to lose sight of joy. This hour, TED speakers search for joy in unexpected places, and explain why it's crucial to a fulfilling life. Speakers include inventor Simone Giertz, designer Ingrid Fetell Lee, journalist David Baron, and musician Meklit Hadero.
Now Playing: Science for the People

#500 500th Episode
This week we turn 500! To celebrate, we're taking the opportunity to go off format, talk about the journey through 500 episodes, and answer questions from our lovely listeners. Join hosts Bethany Brookshire and Rachelle Saunders as we talk through the show's history, how we've grown and changed, and what we love about the Science for the People. Here's to 500 more episodes!