Nav: Home

Embryos remember the chemicals that they encounter

November 08, 2018

We all start out as a clump of identical cells. As these cells divide and multiply, they gradually take on distinct identities, acquiring the traits necessary to form, for instance, muscle tissue, bone, or nerves. A recent study from Rockefeller scientists offers new insight into how these cellular identities are cultivated over the course of development.

According to the study, published in eLife, cells retain a memory of the chemical signals to which they are exposed. And, the researchers show, embryos that fail to form these memories remain a clump of clones, never realizing their unique biological potential.

Activating embryos

Over 25 years ago, Ali H. Brivanlou demonstrated that the protein Activin causes embryonic frog cells to take on traits specific to certain tissue types, a process called differentiation. For decades now, Activin has been thought to instigate the transition from homogenous clump to specialized cells.

"Activin was the textbook definition of a molecule that is necessary and sufficient for differentiation," says Brivanlou, the Robert and Harriet Heilbrunn Professor. "Researchers had shown that the dose of the protein determines cellular fate. At a very high dose, for example, you get gut and muscle; and at a very low dose, you get nerve tissue."

Despite ample evidence from animal studies, questions remained about how Activin guides development in human cells. Working with Brivanlou and Eric D. Siggia, the Viola Ward Brinning and Elbert Calhoun Brinning Professor, graduate fellow Anna Yoney set out investigate whether the protein triggers differentiation in laboratory-generated human embryos. Developed from stem cells, these embryos mimic the behavior of human cells during the early stages of development.

The researchers expected these synthetic embryos to respond just like Brivanlou's frogs. Yet, after applying Activin to these cells, they observed, well, nothing.

"Anna put Activin on the embryos and we waited--and waited and waited. And absolutely nothing happened! That was shocking," says Brivanlou.

Memorable molecules

Undeterred, Yoney considered possible explanations for her results. "I thought, Ok, we don't get a response from Activin alone," she recalls. "What additional signals might we need to see differentiation?"

She ultimately homed in on WNT, a molecule known to regulate the movement of cells during development. In her next experiment, she exposed the cells to WNT before adding Activin; and, this time, they differentiated in the normal manner.

"The cells that saw WNT reacted to Activin with the full range of response--just like we see in the frog and other animals," says Brivanlou. "But cells that hadn't seen WNT were totally unresponsive, as if Activin wasn't even there."

The researchers concluded that differentiation requires both WNT and Activin signaling. Crucially, however, they showed that cells needn't be exposed to the two chemicals simultaneously.

"We blocked WNT signaling during the Activin treatment phase and found that the cells still differentiated," says Yoney. "So we concluded that the cells actually remembered that they had previously been exposed to WNT."

The researchers deemed this phenomenon "signaling memory" because WNT appears to permanently change cells that cross its path. Earlier research in this area failed to uncover evidence for embryonic memories because, says Brivanlou, most developmental biologists work with animal cells.

"In animal model systems, cells encounter a series of signals before people like me manipulate them. But Anna's artificial embryos came from stem cells that hadn't had this kind of exposure--and this makes them perfect tools for discovering the roles of other signals," he says. "As beautiful as the model systems are, sometimes they can lead you to miss things."

The researchers hope to further explore how and where cellular memories are stored. Yoney suspects that they are recorded in cells' nuclei as modifications to the epigenome, which controls the way that cells read out their DNA. Additional research in this area could have major implications for understanding development in humans and other species.
-end-


Rockefeller University

Related Stem Cells Articles:

A protein that stem cells require could be a target in killing breast cancer cells
Researchers have identified a protein that must be present in order for mammary stem cells to perform their normal functions.
Approaching a decades-old goal: Making blood stem cells from patients' own cells
Researchers at Boston Children's Hospital have, for the first time, generated blood-forming stem cells in the lab using pluripotent stem cells, which can make virtually every cell type in the body.
New research finds novel method for generating airway cells from stem cells
Researchers have developed a new approach for growing and studying cells they hope one day will lead to curing lung diseases such as cystic fibrosis through 'personalized medicine.'
Mature heart muscle cells created in the laboratory from stem cells
Generating mature and viable heart muscle cells from human or other animal stem cells has proven difficult for biologists.
Mutations in bone cells can drive leukemia in neighboring stem cells
DNA mutations in bone cells that support blood development can drive leukemia formation in nearby blood stem cells.
Scientists take aging cardiac stem cells out of semiretirement to improve stem cell therapy
With age, the chromosomes of our cardiac stem cells compress as they move into a state of safe, semiretirement.
Purest yet liver-like cells generated from induced pluripotent stem cells
A team of researchers from the Medical University of South Carolina and elsewhere has found a better way to purify liver cells made from induced pluripotent stem cells.
Stem cell scientists discover genetic switch to increase supply of stem cells from cord blood
International stem cell scientists, co-led in Canada by Dr. John Dick and in the Netherlands by Dr.
Stem cells from diabetic patients coaxed to become insulin-secreting cells
Signaling a potential new approach to treating diabetes, researchers at Washington University School of Medicine in St.

Related Stem Cells Reading:

Stem Cell Therapy: A Rising Tide: How Stem Cells Are Disrupting Medicine and Transforming Lives
by Neil H Riordan (Author)

Engineering Stem Cells for Tissue Regeneration
by Ngan F Huang (Author), Ngan F Huang (Editor), Nicolas L'Heureux (Editor), Song L (Editor)

Stem Cells: A Short Course
by Rob Burgess (Author)

Essentials of Stem Cell Biology
by Robert Lanza (Editor), Anthony Atala (Editor)

The Science of Stem Cells
by Jonathan M. W. Slack (Author)

Stem Cell Revolution: Discover 26 Disruptive Technological Advances to Stem Cell Activation
by Joseph Christiano (Author)

The Stem Cell Revolution
by Mark Berman MD (Author), Elliot Lander MD (Contributor)

Stem Cells: An Insider's Guide
by Paul Knoepfler (Author)

A Patient's Guide to Stem Cell Therapy
by Dr. Luis Romero (Author), Dr. Jorge GaviƱo (Contributor)

Stem Cells: Promise And Reality
by Lygia V Pereira (Author)

Best Science Podcasts 2018

We have hand picked the best science podcasts for 2018. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Where Joy Hides
When we focus so much on achievement and success, it's easy to lose sight of joy. This hour, TED speakers search for joy in unexpected places, and explain why it's crucial to a fulfilling life. Speakers include inventor Simone Giertz, designer Ingrid Fetell Lee, journalist David Baron, and musician Meklit Hadero.
Now Playing: Science for the People

#500 500th Episode
This week we turn 500! To celebrate, we're taking the opportunity to go off format, talk about the journey through 500 episodes, and answer questions from our lovely listeners. Join hosts Bethany Brookshire and Rachelle Saunders as we talk through the show's history, how we've grown and changed, and what we love about the Science for the People. Here's to 500 more episodes!