Nav: Home

Bees on the brink

November 08, 2018

For bees, being social is everything.

Whether it's foraging for food, caring for the young, using their bodies to generate heat or to fan the nest, or building and repairing nests, a bee colony does just about everything as a single unit.

While recent studies have suggested exposure to pesticides could have impacts on foraging behavior, a new study, led by James Crall, has shown that those effects may be just the tip of the iceberg.

A post-doctoral fellow working in the lab of Benjamin de Bivort, the Thomas D. Cabot Associate Professor of Organismic and Evolutionary Biology, Crall is the lead author of a study that shows exposure to neonicotinoid pesticides - the most commonly-used class of pesticides in agriculture - has profound effects on a host of social behaviors.

Using an innovative robotic platform to observe bees' behavior, Crall and co-authors including de Bivort and Naomi Pierce, the Sidney A. and John H. Hessel Professor of Biology, showed that, following exposure to the pesticide, bees spent less time nursing larvae and were less social that other bees. Additional tests showed that exposure impaired bees ability to warm the nest, and to build insulating wax caps around the colony. The study is described in a November 9 paper in Science.

In addition to Crall, de Bivort and Pierce, the study was co-authored by Callin Switzer, Ph.D. '18, Stacey Combes from UC Davis, former Organismic and Evolutionary Biology research assistants Robert L. Oppenheimer and Mackay Eyster and Harvard undergraduate Andrea Brown, '19.

"These pesticides first came into use around the mid-1990s, and are now the most commonly-used class of insecticide around the globe," Crall said. "Typically, they work through seed treatment - high concentrations are dosed on seeds, and one reasons farmers and pesticide companies like these compounds is because they are taken up systemically by the plants...so the idea is they provide whole-plant resistance. But the problem is they also show up in the pollen and nectar bees are feeding on."

Over the past decade, Crall said, a number of studies have linked pesticide exposure with disruptions in foraging, "but there were reasons to suspect that wasn't the whole picture."

"Foraging is only a part of what bumblebees do," Crall said. "Those studies were picking up on the important effects these compounds were having on what's going on outside the nest, but there's a whole world of really important behaviors going on inside...and that's a black box we wanted to open up a bit."

To do it, Crall and colleagues developed a unique, benchtop system that allowed them to track the activity of bees in as many as a dozen colonies at a time.

"What we do is put a black and white tag with a simplified QR code, on the back of each bee," he said. "And there's a camera that can move over the colonies and track the behavior of each bee automatically using computer vision...so that allows us to look inside the nest."

Using the system, Crall and colleagues were able to dose specific, individual bees with the pesticide and observe the changes in their behavior - less interaction with nest-mates and spending more time on the periphery of the colony - but those experiments are limited in several important ways.

"One is physiological," Crall said. "Even though we were giving the bees realistic doses of pesticide, drinking your daily allotment of coffee in five minutes is going to be different than spreading it out over the course of the day, so giving one big dose might not be totally realistic. The other important one is that a bee colony is a functional unit. It doesn't make sense to treat individuals, because what you're losing when you do that is the natural social structure of the colony."

With the robotic system, however, researchers can treat an entire colony as a single unit.

Each of the system's 12 units, Crall said, houses a single colony where bees have access to two chambers - one to mimic the nest and the other to act as a foraging space.

"That lets us do multiple, colony-level exposure, and to do continuous monitoring," Crall said. "We think this is much closer to how their natural behavior works, and it also allows us to automate behavioral tracking across multiple colonies at the same time."

Just as in earlier studies, Crall said, exposed bees showed changes in activity levels and socialization, and spent more time on the fringes of the nest, but the tests also showed that the results were strongest overnight.

"Bees actually have a very strong circadian rhythm," Crall explained. "So what we found was that, during the day, there was no statistically-observable effect, but at night, we could see that they were crashing. We don't know yet whether (the pesticides) are disrupting circadian gene regulation or if this is just some, maybe physiological feedback...but it suggests that, just from a practical perspective, if we want to understand or study these compounds, looking at effects overnight matters a lot."

Additional experiments, in which temperature probes were placed inside outdoor hives, suggested pesticides have profound effects on bees' ability to regulate temperatures inside the nest.

"When temperatures drop, bees lock their wings down and shiver their muscles to generate heat," Crall said. "But what we found was that, in control colonies, even as the temperature fluctuated widely, they were able to keep the temperature in the colony steady to within a few degrees. But the exposed bees, they pretty dramatically lose the capacity to regulate temperature."

In addition to disrupting bees' ability to directly heat or cool the nest, the experiment also revealed that pesticide exposure impacted bees' ability to build an insulating wax cap over the colony.

"Almost all of our control colonies built that cap," Crall said. "And it seems to be totally wiped out in the pesticide-exposed colonies, so they lose this capacity to do this functional restructuring of the nest."

Going forward, Crall said, there are some additional questions raised by the study that he hopes to address.

"This work - especially on thermoregulation - opens up a new set of questions, not just about what the direct effects of pesticides are, but how those pesticides impair the ability of colonies to cope with other stressors," he said. "This work suggests that, in particularly extreme environments, we might expect the effects of pesticides to be worse, so it changes both how we go about practically testing agro-chemicals in general, but it points to specific questions about whether we might see stronger declines in certain environments."

Taken together, Crall believes the findings point to the need for tighter regulation of neonicotinoids and other pesticides that may be impacting bees.

"I think we're at a point where we should be very, very concerned about how the ways in which we're changing the environment is undercutting and decimating insect populations that are important not only for the function of every ecosystem...but that are very important for food production," he said. "Our food system is becoming more and more pollinator-dependent over time - today about a third of food crops are dependent on pollinators, and that's only rising. Up until now, we've had this abundant, natural gift of pollinators doing all this work for us, and now we're starting to realize that isn't a given, so I think we should be very worried about that."
-end-
This research was supported with funding from BioBest, the National Science Foundation, the Winslow Foundation, the Rockefeller Foundation, the National Defense Science and Engineering Graduate Fellowship Program, the Moore and Sloan Foundations, a Sloan Research Fellowship, a Klingenstein-Simons Fellowship Award and the Statistical and Applied Mathematical Sciences Institute.

Harvard University

Related Pesticides Articles:

SDHI pesticides are toxic for human cells
French scientists led by a CNRS researcher have just revealed that eight succinate dehydrogenase inhibitor pesticide molecules do not just inhibit the SDH activity of fungi, but can also block that of earthworms, bees, and human cells in varying proportions.
Pesticides deliver a one-two punch to honey bees
A new paper in Environmental Toxicology and Chemistry reveals that adjuvants, chemicals commonly added to pesticides, amplify toxicity affecting mortality rates, flight intensity, colony intensity, and pupae development in honey bees.
Hypertension found in children exposed to flower pesticides
Researchers at University of California San Diego School of Medicine found higher blood pressure and pesticide exposures in children associated with a heightened pesticide spraying period around the Mother's Day flower harvest.
Banned pesticides in Europe's rivers
Tests of Europe's rivers and canals have revealed more than 100 pesticides -- including 24 that are not licensed for use in the EU.
The persistence of pesticides threatens European soils
A study developed by researchers from the Diverfarming project finds pesticide residues in the soils of eleven European countries in six different cropping systems
Honeybees at risk from Zika pesticides
Up to 13 percent of US beekeepers are in danger of losing their colonies due to pesticides sprayed to contain the Zika virus, new research suggests.
Alternatives to pesticides -- Researchers suggest popular weeds
Research proves that extracts from S. nigrum and D. stramonium, globally existing weed species, may help to protect crop systems against agricultural pests.
Seeing pesticides spread through insect bodies
Osaka University-led team provides insights into the distribution of pesticides within insects using a newly developed method of insect sample preparation.
The more pesticides bees eat, the more they like them
Bumblebees acquire a taste for pesticide-laced food as they become more exposed to it, a behavior showing possible symptoms of addiction.
Research shows pesticides influence bee learning and memory
A large-scale study published by researchers from Royal Holloway University of London has drawn together the findings of a decade of agrochemical research to confirm that pesticides used in crop protection have a significant negative impact on the learning and memory abilities of bees.
More Pesticides News and Pesticides Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

Accessing Better Health
Essential health care is a right, not a privilege ... or is it? This hour, TED speakers explore how we can give everyone access to a healthier way of life, despite who you are or where you live. Guests include physician Raj Panjabi, former NYC health commissioner Mary Bassett, researcher Michael Hendryx, and neuroscientist Rachel Wurzman.
Now Playing: Science for the People

#544 Prosperity Without Growth
The societies we live in are organised around growth, objects, and driving forward a constantly expanding economy as benchmarks of success and prosperity. But this growing consumption at all costs is at odds with our understanding of what our planet can support. How do we lower the environmental impact of economic activity? How do we redefine success and prosperity separate from GDP, which politicians and governments have focused on for decades? We speak with ecological economist Tim Jackson, Professor of Sustainable Development at the University of Surrey, Director of the Centre for the Understanding of Sustainable Propserity, and author of...
Now Playing: Radiolab

An Announcement from Radiolab