Nav: Home

'Nested sequences': An indispensable mechanism for forming memories

November 08, 2018

Repetition is the best method for memorization, for neurons themselves. This is the principle behind what neurobiologists call sequence reactivations: during sleep, neurons in the hippocampus related to a task activate very quickly in turn in a precise order, which consolidates the memory of this task. Sequence reactivations are fundamental for long-term memorization and for exchanges between the hippocampus and the rest of the brain. These are only present at rest so they appear after initial neuron activity, which implies that they "memorize" the order they should turn on in. But by which mechanism?

A team of researchers from the Centre interdisciplinaire de recherche en biologie (CNRS/Inserm/Collège de France)* has answered this question by studying activity sequences in rats' place cells. These are hippocampal neurons that turn on by following the animal's position in the environment when it moves. First slowly, while it moves, then very quickly during reactivations of sequences during sleep. But neurobiologists know another type of sequence, called theta sequences, which quickly repeat the activation of the same place cells when the animal moves, in parallel with slow sequences. These theta sequences are therefore called "nested".

Which of these sequences, slow or nested, is necessary for the appearance of sequence reactivations, and therefore causes the consolidation of memories during sleep? Using an ingenious system, the researchers discovered what deactivates nested sequences, without affecting slow sequences: the animals are transported on an electric train, in a car with a treadmill (see image). When the treadmill is stopped, the nested sequences disappear; they return when the treadmill starts again.

The researchers then observed that after several circuits in the train with the treadmill stopped, place cells in the rats' hippocampi did not reactivate during sleep in the same order as when awake. On the contrary, after one train circuit with the treadmill on, the sequence reactivations are indeed present. So it is these nested theta sequences during movement that are indispensable for the consolidation of memory during sleep.

The researchers are continuing their work, looking now at the integration of non-spatial information such as objects or textures in nested sequences, and their reactivation during sleep.

* - Associated member of the Université PSL, since 2009 the Collège de France has been conducting a voluntaristic policy for welcoming independent teams that benefit from pooled technical or scientific services and an exceptional multidisciplinary environment. Twenty-two teams are currently housed in the Centre interdisciplinaire de recherche en biologie and in the Instituts de chimie et de physique du Collège de France. Supported by the CNRS in particular, this is available to both French and foreign researchers. It contributes to making Paris a major player as an attractive place for research.
-end-


CNRS

Related Neurons Articles:

New tool to identify and control neurons
One of the big challenges in the Neuroscience field is to understand how connections and communications trigger our behavior.
Neurons that regenerate, neurons that die
In a new study published in Neuron, investigators report on a transcription factor that they have found that can help certain neurons regenerate, while simultaneously killing others.
How neurons use crowdsourcing to make decisions
When many individual neurons collect data, how do they reach a unanimous decision?
Neurons can learn temporal patterns
Individual neurons can learn not only single responses to a particular signal, but also a series of reactions at precisely timed intervals.
A turbo engine for tracing neurons
Putting a turbo engine into an old car gives it an entirely new life -- suddenly it can go further, faster.
Brain neurons help keep track of time
Turning the theory of how the human brain perceives time on its head, a novel analysis in mice reveals that dopamine neuron activity plays a key role in judgment of time, slowing down the internal clock.
During infancy, neurons are still finding their places
Researchers have identified a large population of previously unrecognized young neurons that migrate in the human brain during the first few months of life, contributing to the expansion of the frontal lobe, a region important for social behavior and executive function.
How many types of neurons are there in the brain?
For decades, scientists have struggled to develop a comprehensive census of cell types in the brain.
Molecular body guards for neurons
In the brain, patterns of neural activity are perfectly balanced.
Engineering researchers use laser to 'weld' neurons
University of Alberta researchers have developed a method of connecting neurons, using ultrashort laser pulses -- a breakthrough technique that opens the door to new medical research and treatment opportunities.

Related Neurons Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Changing The World
What does it take to change the world for the better? This hour, TED speakers explore ideas on activism—what motivates it, why it matters, and how each of us can make a difference. Guests include civil rights activist Ruby Sales, labor leader and civil rights activist Dolores Huerta, author Jeremy Heimans, "craftivist" Sarah Corbett, and designer and futurist Angela Oguntala.
Now Playing: Science for the People

#521 The Curious Life of Krill
Krill may be one of the most abundant forms of life on our planet... but it turns out we don't know that much about them. For a create that underpins a massive ocean ecosystem and lives in our oceans in massive numbers, they're surprisingly difficult to study. We sit down and shine some light on these underappreciated crustaceans with Stephen Nicol, Adjunct Professor at the University of Tasmania, Scientific Advisor to the Association of Responsible Krill Harvesting Companies, and author of the book "The Curious Life of Krill: A Conservation Story from the Bottom of the World".