Nav: Home

Replaying the tape of life: Is it possible?

November 08, 2018

GAMBIER, Ohio -- How predictable is evolution? The answer has long been debated by biologists grappling with the extent to which history affects the repeatability of evolution.

A review published in the Nov. 9 issue of Science explores the complexity of evolution's predictability in extraordinary detail. In it, researchers at Kenyon College, Michigan State University and Washington University in St. Louis closely examine evidence from a number of empirical studies of evolutionary repeatability and contingency in an effort to fully interrogate ideas about contingency's role in evolution.

The question of evolution's predictability was notably raised by the late paleontologist Stephen Jay Gould, who advocated the view that evolution is contingent and unrepeatable in his 1989 book Wonderful Life. "Replay the tape a million times ... and I doubt that anything like Homo sapiens would ever evolve again," Gould mused, noting that being able to "replay the tape" and give history a do-over would be impossible. Yet since the publication of Wonderful Life, many evolutionary biologists have taken up this challenge and conducted their own versions of Gould's experiment, albeit on smaller scales. In doing so, they have reached different conclusions about the interplay between randomness of mutations, chance historical events, and directionality imparted by natural selection.

"How history plays out isn't really predictable. Historical outcomes are contingent on long chains of events loaded with tiny little details. A dropped packet of cigars wrapped with the Confederate army's marching orders was found by a Union soldier, which led to the Battle of Antietam, which led to Lincoln announcing the Emancipation Proclamation. What if those cigars hadn't been dropped, or if they hadn't been found by a Union soldier? Evolution is similar, in that it plays out over vast periods of time with long, unique chains of events involving a lot of chance. Unlike history, though, evolution has the deterministic force of natural selection, but that determinism is always in tension with the chanciness. How does that tension affect what evolves? Which is more important: contingency on details of history, or determinism?" said Zachary Blount, a senior research associate at MSU and visiting assistant professor of biology at Kenyon College who served as lead author of the review.

Blount was joined in his work by Richard Lenski, the Hannah Distinguished Professor of Microbial Ecology at MSU, and Jonathan Losos, the William H. Danforth Distinguished University Professor at Washington University in St. Louis.

"The idea of replaying life's tape -- having a fresh start -- is something almost everyone has thought about at some point in their own lives. It's also something that has long interested biologists, but on the grand scale of the history of life on Earth," Lenski said. "Since Gould introduced the metaphor of replaying life's tape, many studies have tried to characterize the repeatability of evolution. What our review shows is that there's no easy answer: Sometimes evolution produces strikingly similar solutions, and other times evolving lineages take very different paths even under the same circumstances. I think that's part of the fascination and beauty of evolution, that it produces both the expected and unexpected, perhaps like in our individual lives, but on a vastly larger scale."

Gould's thought experiment still stimulates robust debate, in part due to inconsistencies Gould introduced in how he described his replay metaphor, as well as confusion around the concept of contingency. Gould often conflated two common meanings of "contingency": as dependence on something else, and as a chance event.

"There are multiple, different literatures on Gould's idea, and these literatures are not talking to each other," Losos said. "There are microbial evolution studies. There are all the studies of convergent evolution, or lack of convergent evolution. And there's also a philosophical literature on what Gould meant when he said, 'replay the tape.' That is, more generally, when you talk about the role of contingency -- which is the term Gould used - what does that actually mean?"

Their review of existing empirical studies focused on primarily on three types of "replay studies": laboratory evolution experiments with fast-evolving organisms; experiments carried out in nature; and natural experiments that compare lineages that evolved under similar conditions. The comprehensive analysis revealed a complex picture of evolutionary change in which both contingency and determinism are evident.

Blount, Lenski and Losos examined a number of different types of laboratory experiments, including parallel replay experiments, in which identical populations of an organism are separately evolved under identical conditions, and analytic replay experiments, in which specimens are frozen from a parallel replay experiment and then resurrected and re-evolved from different points in time. This review included study of the long-term evolution experiment with Escherichia coli (LTEE), started by Lenski in 1988. The LTEE has followed 12 populations of E. coli, founded from a single clone, for more than 70,000 generations. Samples of each population were frozen every 500 generations, allowing researchers to directly compare the evolving bacteria with their ancestors.

Blount, Lenski and Losos also examined experiments that attempt to replicate evolution in natural settings. Only a few such experiments exist to date, and their review of these experiments indicated a high degree of repeatability in evolutionary responses to different historical conditions.

Their review of comparative studies of "natural experiments" further illuminated evidence of evolution's predictability. Similar features can independently evolve in multiple species -- for example, anole lizards of the Caribbean, which separately evolved traits such as the length of their legs and tails to ease their life in their specific habitats. Yet convergence in evolution does not always occur, as their review shows; contingency can play a strong role in divergent evolution of various traits.

"What we clearly see is that both convergence and lack of convergence occur a lot in the natural world," Losos said. "It's not useful just to keep adding to the two lists. The real question that people are now turning to is: Why does convergence occur sometimes and not others? That is where research is now headed. That's the question we need to focus on."
Their review was supported in part by a grant from the National Science Foundation, the BEACON Center for the Study of Evolution in Action, Michigan State University and Harvard University.

Kenyon College is a highly selective, private liberal arts institution with a high-achieving student enrollment of about 1,700. Founded in 1824, Kenyon is the oldest private college in Ohio and is widely known for its excellent teaching faculty and close collaboration among faculty and students. For more information on Kenyon College, visit

Michigan State University has been working to advance the common good in uncommon ways for 160 years. One of the top research universities in the world, MSU focuses its vast resources on creating solutions to some of the world's most pressing challenges, while providing life-changing opportunities to a diverse and inclusive academic community through more than 200 programs of study in 17 degree-granting colleges. For MSU news on the Web, go to MSUToday. Follow MSU News on Twitter at

Washington University in St. Louis is counted among the world's leaders in teaching, research, patient care and service to society. The total student body is more than 14,000 undergraduate, graduate and professional students. The university offers more than 90 programs and almost 1,500 courses leading to bachelor's, master's and doctoral degrees in a broad spectrum of traditional and interdisciplinary fields, with additional opportunities for minor concentrations and individualized programs.


Mary Keister, Kenyon College
Director of News Media Relations

Layne Cameron, Michigan State University
Media Communications Manager

Talia Ogliore, Washington University in St. Louis
Senior News Director, Science

Washington University in St. Louis

Related Evolution Articles:

Prebiotic evolution: Hairpins help each other out
The evolution of cells and organisms is thought to have been preceded by a phase in which informational molecules like DNA could be replicated selectively.
How to be a winner in the game of evolution
A new study by University of Arizona biologists helps explain why different groups of animals differ dramatically in their number of species, and how this is related to differences in their body forms and ways of life.
The galloping evolution in seahorses
A genome project, comprising six evolutionary biologists from Professor Axel Meyer's research team from Konstanz and researchers from China and Singapore, sequenced and analyzed the genome of the tiger tail seahorse.
Fast evolution affects everyone, everywhere
Rapid evolution of other species happens all around us all the time -- and many of the most extreme examples are associated with human influences.
Landscape evolution and hazards
Landscapes are formed by a combination of uplift and erosion.
New insight into enzyme evolution
How enzymes -- the biological proteins that act as catalysts and help complex reactions occur -- are 'tuned' to work at a particular temperature is described in new research from groups in New Zealand and the UK, including the University of Bristol.
The evolution of Dark-fly
On Nov. 11, 1954, Syuiti Mori turned out the lights on a small group of fruit flies.
A look into the evolution of the eye
A team of researchers, among them a zoologist from the University of Cologne, has succeeded in reconstructing a 160 million year old compound eye of a fossil crustacean found in southeastern France visible.
Is evolution more intelligent than we thought?
Evolution may be more intelligent than we thought, according to a University of Southampton professor.
The evolution of antievolution policies
Organized opposition to the teaching of evolution in public schoolsin the United States began in the 1920s, leading to the famous Scopes Monkey trial.

Related Evolution Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Changing The World
What does it take to change the world for the better? This hour, TED speakers explore ideas on activism—what motivates it, why it matters, and how each of us can make a difference. Guests include civil rights activist Ruby Sales, labor leader and civil rights activist Dolores Huerta, author Jeremy Heimans, "craftivist" Sarah Corbett, and designer and futurist Angela Oguntala.
Now Playing: Science for the People

#521 The Curious Life of Krill
Krill may be one of the most abundant forms of life on our planet... but it turns out we don't know that much about them. For a create that underpins a massive ocean ecosystem and lives in our oceans in massive numbers, they're surprisingly difficult to study. We sit down and shine some light on these underappreciated crustaceans with Stephen Nicol, Adjunct Professor at the University of Tasmania, Scientific Advisor to the Association of Responsible Krill Harvesting Companies, and author of the book "The Curious Life of Krill: A Conservation Story from the Bottom of the World".