Nav: Home

Scientists take strides towards entirely renewable energy

November 08, 2019

Scientists from Trinity College Dublin have taken a giant stride towards solving a riddle that would provide the world with entirely renewable, clean energy from which water would be the only waste product.

Reducing humanity's carbon dioxide (CO2) emissions is arguably the greatest challenge facing 21st century civilisation - especially given the ever-increasing global population and the heightened energy demands that come with it.

One beacon of hope is the idea that we could use renewable electricity to split water (H2O) to produce energy-rich hydrogen (H2), which could then be stored and used in fuel cells. This is an especially interesting prospect in a situation where wind and solar energy sources produce electricity to split water, as this would allow us to store energy for use when those renewable sources are not available.

The essential problem, however, is that water is very stable and requires a great deal of energy to break up. A particularly major hurdle to clear is the energy or "overpotential" associated with the production of oxygen, which is the bottleneck reaction in splitting water to produce H2.

Although certain elements are effective at splitting water, such as Ruthenium or Iridium (two of the so-called noble metals of the periodic table), these are prohibitively expensive for commercialisation. Other, cheaper options tend to suffer in terms of their efficiency and/or their robustness. In fact, at present, nobody has discovered catalysts that are cost-effective, highly active and robust for significant periods of time.

So, how do you solve such a riddle? Stop before you imagine lab coats, glasses, beakers and funny smells; this work was done entirely through a computer.

By bringing together chemists and theoretical physicists, the Trinity team behind the latest breakthrough combined chemistry smarts with very powerful computers to find one of the "holy grails" of catalysis.

The team, led by Professor Max García-Melchor, made a crucial discovery when investigating molecules which produce oxygen: Science had been underestimating the activity of some of the more reactive catalysts and, as a result, the dreaded "overpotential" hurdle now seems easier to clear. Furthermore, in refining a long-accepted theoretical model used to predict the efficiency of water splitting catalysts, they have made it immeasurably easier for people (or super-computers) to search for the elusive "green bullet" catalyst.

Lead author, Michael Craig, Trinity, is excited to put this insight to use. He said: "We know what we need to optimise now, so it is just a case of finding the right combinations."

The team aims to now use artificial intelligence to put a large number of earth-abundant metals and ligands (which glue them together to generate the catalysts) in a melting pot before assessing which of the near-infinite combinations yield the greatest promise.

In combination, what once looked like an empty canvas now looks more like a paint-by-numbers as the team has established fundamental principles for the design of ideal catalysts.

Professor Max García-Melchor added: "Given the increasingly pressing need to find green energy solutions it is no surprise that scientists have, for some time, been hunting for a magical catalyst that would allow us to split water electrochemically in a cost-effective, reliable way. However, it is no exaggeration to say that before now such a hunt was akin to looking for a needle in a haystack. We are not over the finishing line yet, but we have significantly reduced the size of the haystack and we are convinced that artificial intelligence will help us hoover up plenty of the remaining hay."

He also stressed that: "This research is hugely exciting for a number of reasons and it would be incredible to play a role in making the world a more sustainable place. Additionally, this shows what can happen when researchers from different disciplines come together to apply their expertise to try to solve a problem that affects each and every one of us."
-end-
Professor Max García-Melchor is an Ussher Assistant Professor in Chemistry at Trinity and senior author on the landmark research that has just been published in a leading international journal, Nature Communications.

Collaborating authors include Gabriel Coulter, formerly of Trinity and now studying for a MSc at the University of Cambridge; Eoin Dolan formerly of Trinity and now completing an Erasmus Mundus joint MSc degree in Paris; Dr Joaquín Soriano-Lòpez, MSCA-Edge fellow in Trinity's School of Chemistry; Eric Mates, PhD candidate in Trinity's School of Chemistry and Professor Wolfgang Schmitt from Trinity's School of Chemistry.

The research has been supported by Science Foundation Ireland and the Irish Centre for High-End Computing (ICHEC), where the team is benefiting from 4,500,000 CPU hours at Ireland's state-of-the-art super-computer facility.

Trinity College Dublin

Related Artificial Intelligence Articles:

Artificial intelligence system gives fashion advice
A University of Texas at Austin-led computer science team has developed an artificial intelligence system that can look at a photo of an outfit and suggest helpful tips to make it more fashionable.
Do we trust artificial intelligence agents to mediate conflict? Not entirely
We may listen to facts from Siri or Alexa, or directions from Google Maps or Waze, but would we let a virtual agent enabled by artificial intelligence help mediate conflict among team members?
Artificial intelligence improves biomedical imaging
ETH researchers use artificial intelligence to improve quality of images recorded by a relatively new biomedical imaging method.
Evolution of learning is key to better artificial intelligence
Researchers at Michigan State University say that true, human-level intelligence remains a long way off, but their new paper published in The American Naturalist explores how computers could begin to evolve learning in the same way as natural organisms did -- with implications for many fields, including artificial intelligence.
Artificial intelligence probes dark matter in the universe
A team of physicists and computer scientists at ETH Zurich has developed a new approach to the problem of dark matter and dark energy in the universe.
Artificial intelligence used to recognize primate faces in the wild
Scientists at the University of Oxford have developed new artificial intelligence software to recognize and track the faces of individual chimpanzees in the wild.
The brain inspires a new type of artificial intelligence
Using advanced experiments on neuronal cultures and large scale simulations, scientists at Bar-Ilan University have demonstrated a new type of ultrafast artifical intelligence algorithms -- based on the very slow brain dynamics -- which outperform learning rates achieved to date by state-of-the-art learning algorithms.
A new approach to the correction of artificial intelligence errors is proposed
The journal 'Physics of Life Reviews', which has one of the highest impact factors in the categories 'Biology' and 'Biophysics', has published an article entitled 'Symphony of high-dimensional brain'.
Artificial intelligence could help air travelers save a bundle
Researchers are using artificial intelligence to help airlines price ancillary services such as checked bags and seat reservations in a way that is beneficial to customers' budget and privacy, as well as to the airline industry's bottom line.
'Artificial intelligence' fit to monitor volcanoes
More than half of the world's active volcanoes are not monitored instrumentally.
More Artificial Intelligence News and Artificial Intelligence Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

Risk
Why do we revere risk-takers, even when their actions terrify us? Why are some better at taking risks than others? This hour, TED speakers explore the alluring, dangerous, and calculated sides of risk. Guests include professional rock climber Alex Honnold, economist Mariana Mazzucato, psychology researcher Kashfia Rahman, structural engineer and bridge designer Ian Firth, and risk intelligence expert Dylan Evans.
Now Playing: Science for the People

#540 Specialize? Or Generalize?
Ever been called a "jack of all trades, master of none"? The world loves to elevate specialists, people who drill deep into a single topic. Those people are great. But there's a place for generalists too, argues David Epstein. Jacks of all trades are often more successful than specialists. And he's got science to back it up. We talk with Epstein about his latest book, "Range: Why Generalists Triumph in a Specialized World".
Now Playing: Radiolab

Dolly Parton's America: Neon Moss
Today on Radiolab, we're bringing you the fourth episode of Jad's special series, Dolly Parton's America. In this episode, Jad goes back up the mountain to visit Dolly's actual Tennessee mountain home, where she tells stories about her first trips out of the holler. Back on the mountaintop, standing under the rain by the Little Pigeon River, the trip triggers memories of Jad's first visit to his father's childhood home, and opens the gateway to dizzying stories of music and migration. Support Radiolab today at Radiolab.org/donate.