Nav: Home

Turbulence creates ice in clouds

November 08, 2019

Leipzig. Vertical air motions increase ice formation in mixed-phase clouds. This correlation was predicted theoretically for a long time, but could now be observed for the first time in nature. This result was published by a team from Leibniz Institute for Tropospheric Research (TROPOS) in Leipzig in npj Climate and Atmospheric Science, an Open Access journal published by Nature Research. Using laser and radar equipment, the team measured the vertical air velocity and ice formation in thin mixed-phase clouds. Such clouds contain ice particles, water vapour as well as supercooled liquid droplets. The results from Leipzig could help to map an important part of the water cycle better in the weather and climate models in the future by ice formation in clouds.

The formation of ice in clouds is a core element of the water cycle on Earth. It is usually difficult to isolate the ice formation process in order to study it individually because the interaction of aerosol particles, air motion and microphysical processes in clouds is too complex. Nevertheless, it is necessary to understand these processes in detail in order to better map this mechanism in weather and climate models.

The cloud researchers concentrated on a less spectacular and therefore less considered form of clouds in order to exclude other processes than primary ice formation. They investigated large cloud fields at an altitude of about 2 to 8 kilometres with a vertical extent of only 100 to 200 metres and contained extremely little ice in the range of micrograms per cubic meter. Such thin cloudsallow both ice to be detected with a cloud radar and the vertical air movement with a Doppler lidar, as the laser beam can still penetrate the clouds. Both lidar and radar instruments were therefore necessary to investigate the turbulence and ice formation in these clouds above Leipzig from the ground. "The effect only became visible when we observed the ice directly below the clouds' top layer. Our findings enable for the first time quantitative and well constraint insights into the relationship between turbulence and ice formation in the atmosphere. The stronger a cloud is 'shaken' by vertical air motions, the more ice falls out of it," reports Dr Johannes Bühl of TROPOS. This correlation was measured for clouds colder than -12 °C. Next, the remote sensing scientists want to explore the influence of aerosols by taking a closer look at the beginning (ice nucleation) and end (precipitation of ice particles) of the ice formation process.

Ice formation in clouds is an important process in the atmosphere, because without this ice practically no precipitation would fall from clouds in the middle latitudes of the Earth. As far-reaching as these processes may be, many details have not yet been sufficiently understood and are therefore not taken into account in the weather and climate models. Tilo Arnhold
-end-
Publication:

Bühl, Johannes; Seifert, Patric; Engelmann, Ronny and Ansmann, Albert (2019): Impact of vertical air motions on ice formation rate in mixed-phase cloud layers. npj Climate and Atmospheric Science volume 2, Article number: 36 (2019). DOI: 10.1038/s41612-019-0092-6.

https://doi.org/10.1038/s41612-019-0092-6

The study was funded by the European Union under the Seventh Framework Programme (ACTRIS / 262254 and BACCHUS / 603445) and the German Research Foundation (DFG; UNDINE / 162311106).

Links:

The Leipzig Aerosol and Cloud Remote Observations System LACROS

https://www.tropos.de/en/research/projects-infrastructures-technology/coordinated-observations-and-networks/lacros

Current data from LACROS:

http://lacros.rsd.tropos.de/

CLOUDNET:

https://www.tropos.de/en/research/projects-infrastructures-technology/coordinated-observations-and-networks/cloudnet

Contacts:

Dr Johannes Bühl, Dr Patric Seifert, Dr Ronny Engelmann
Scientific staff, Department „Remote Sensing of Atmospheric Processes" at the Leibniz Institute for Tropospheric Research (TROPOS), Leipzig, Germany
Phone +49-341-2717-7312, -7080, -7315

https://www.tropos.de/en/institute/about-us/employees/johannes-buehl
https://www.tropos.de/en/institute/about-us/employees/patric-seifert
https://www.tropos.de/en/institute/about-us/employees/ronny-engelmann

and

Dr Albert Ansmann
Leader of the Working Group Ground Based Remote Sensing, Department „Remote Sensing of Atmospheric Processes" at the Leibniz Institute for Tropospheric Research (TROPOS), Leipzig, Germany
Phone: +49-341-2717-7064
https://www.tropos.de/en/institute/about-us/employees/albert-ansmann

or

Tilo Arnhold
Public Relations at the Leibniz Institute for Tropospheric Research (TROPOS), Leipzig, Germany
Phone: +49-341-2717-7189
https://www.tropos.de/en/current-issues/press-releases

Leibniz Institute for Tropospheric Research (TROPOS)

Related Climate Models Articles:

Climate models and geology reveal new insights into the East Asian monsoon
A team of scientists, led by the University of Bristol, have used climate models and geological records to better understand changes in the East Asian monsoon over long geologic time scales.
Multifactor models reveal worse picture of climate change impact on marine life
Rising ocean temperatures have long been linked to negative impacts for marine life, but a Florida State University team has found that the long-term outlook for many marine species is much more complex -- and possibly bleaker -- than scientists previously believed.
Airborne lidar system poised to improve accuracy of climate change models
Researchers have developed a laser-based system that can be used for airborne measurement of important atmospheric gases with unprecedented accuracy and resolution.
Pulses of sinking carbon reaching the deep sea are not captured in global climate models
A new study by MBARI scientists shows that pulses of sinking debris carry large amounts of carbon to the deep seafloor, but are poorly represented in global climate models.
Study brings new climate models of small star TRAPPIST 1's seven intriguing worlds
New research from a University of Washington-led team of astronomers gives updated climate models for the seven planets around the star TRAPPIST-1.
Current climate models underestimate warming by black carbon aerosol
Researchers in the School of Engineering & Applied Science have discovered a new, natural law that sheds light on the fundamental relationship between coated black carbon and light absorption.
Improving climate models to account for plant behavior yields 'goodish' news
Climate scientists have not been properly accounting for what plants do at night, and that, it turns out, is a mistake.
Climate models fail to simulate recent air-pressure changes over Greenland
Climatologists may be unable to accurately predict regional climate change over the North Atlantic because computer simulations have failed to include real data from the Greenland region over the last three decades -- and it could lead to regional climate predictions for the UK and parts of Europe being inaccurate.
Tropics are widening as predicted by climate models, research finds
Scientists have observed for years that the Earth's tropics are widening in connection with complex changes in climate and weather patterns.
'Abrupt thaw' of permafrost beneath lakes could significantly affect climate change models
Methane released by thawing permafrost from some Arctic lakes could significantly accelerate climate change, according to a new University of Alaska Fairbanks-led study.
More Climate Models News and Climate Models Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

Risk
Why do we revere risk-takers, even when their actions terrify us? Why are some better at taking risks than others? This hour, TED speakers explore the alluring, dangerous, and calculated sides of risk. Guests include professional rock climber Alex Honnold, economist Mariana Mazzucato, psychology researcher Kashfia Rahman, structural engineer and bridge designer Ian Firth, and risk intelligence expert Dylan Evans.
Now Playing: Science for the People

#540 Specialize? Or Generalize?
Ever been called a "jack of all trades, master of none"? The world loves to elevate specialists, people who drill deep into a single topic. Those people are great. But there's a place for generalists too, argues David Epstein. Jacks of all trades are often more successful than specialists. And he's got science to back it up. We talk with Epstein about his latest book, "Range: Why Generalists Triumph in a Specialized World".
Now Playing: Radiolab

Dolly Parton's America: Neon Moss
Today on Radiolab, we're bringing you the fourth episode of Jad's special series, Dolly Parton's America. In this episode, Jad goes back up the mountain to visit Dolly's actual Tennessee mountain home, where she tells stories about her first trips out of the holler. Back on the mountaintop, standing under the rain by the Little Pigeon River, the trip triggers memories of Jad's first visit to his father's childhood home, and opens the gateway to dizzying stories of music and migration. Support Radiolab today at Radiolab.org/donate.