Nav: Home

Genetic diversity facilitates cancer therapy

November 08, 2019

The constant battle against infectious pathogens has had a decisive influence on the human immune system over the course of our evolution. A key role in our adaptation to pathogens is played by HLA molecules. These proteins activate the immune system by presenting it with fragments of pathogens that have entered the body. People with a wide variety of different HLA proteins are thus better armed against a large number of pathogens. Researchers at the Max Planck Institute for Evolutionary Biology in Plön, together with colleagues in New York, have been investigating the diversity of HLA genes in cancer patients being treated with immune checkpoint inhibitors. This form of immunotherapy activates the body's own immune cells to enable them to identify and eliminate tumour cells. The researchers discovered that patients with a wide variety of HLA molecules derive more benefit from this type of therapy. This means that in future, doctors may be able to offer improved individual treatment based on a patient's HLA gene profile.

In the evolution of an organism, the characteristics which often prevail are those which increase the chances of survival and reproduction of their carrier. In contrast, for a robust immune system it could be advantageous for it to be variable, keeping as many options open as possible - a hypothesis which has been tested and confirmed in an early study carried out specifically on HLA molecules by Federica Pierini and Tobias Lenz at the Max Planck Institute for Evolutionary Biology.

It is therefore essential for the effectiveness of an immune system to have many different variants of HLA molecules, since each variant can bind to several different pathogen or cancer cell protein fragments. The more the HLA molecule variants differ, the more pathogen molecules they can present to the immune system cells. "Pathogens are constantly changing, and the immune system has to adapt to them. This leads to constant new diversity in immunity genes," explained Tobias Lenz, of the Max Planck Institute for Evolutionary Biology.

Therapy with varying success

Together with clinical researcher Timothy Chan from New York, and his colleagues, Pierini and Lenz have investigated the influence this naturally occurring HLA diversity has on the effectiveness of anti-cancer immunotherapies. When treating cancer patients with immune checkpoint inhibitors, certain proteins that reduce the immune response are themselves inhibited. Immune cells are then better able to act against the tumour cells. However, not all cancer patients respond to the same degree: some conquer the cancer completely with this therapy, for others it has virtually no effect.

The researchers have been investigating the link between the HLA diversity of patients and the success of their therapy. Their research now showed that patients with a wider variety of HLA variants respond better to the therapy and survive for longer. "A higher variability of HLA genes increases the chances of the immune system identifying the cancer cells as foreign and combating them," explains Lenz.

HLA gene diversity can be ascertained using DNA analysis. Clinical evaluation of this type of analysis is currently under way. The aim is to carry out HLA diversity analysis as part of cancer diagnosis, in order to offer cancer patients an individually tailored therapy. The diversity of HLA genes could be an equally crucial marker in the area of infectious diseases. "An analysis of HIV patients revealed that patients with greater HLA diversity have fewer viruses in their blood," says Lenz of the results of another study carried out by his working group. These patients' immune systems are clearly better able to control the virus.
-end-
Original publication

Diego Chowell, Chirag Krishna, Federica Pierini, Vladimir Makarov, Naiyer A. Rizvi, Fengshen Kuo, Luc G. T. Morris, Nadeem Riaz, Tobias L. Lenz and Timothy A. Chan
Evolutionary divergence of HLA class I genotype impacts efficacy of cancer immunotherapy.
Nature Medicine; 7 November, 2019

Max-Planck-Gesellschaft

Related Immune System Articles:

COVID-19: Immune system derails
Contrary to what has been generally assumed so far, a severe course of COVID-19 does not solely result in a strong immune reaction - rather, the immune response is caught in a continuous loop of activation and inhibition.
Immune cell steroids help tumours suppress the immune system, offering new drug targets
Tumours found to evade the immune system by telling immune cells to produce immunosuppressive steroids.
Immune system -- Knocked off balance
Instead of protecting us, the immune system can sometimes go awry, as in the case of autoimmune diseases and allergies.
Too much salt weakens the immune system
A high-salt diet is not only bad for one's blood pressure, but also for the immune system.
Parkinson's and the immune system
Mutations in the Parkin gene are a common cause of hereditary forms of Parkinson's disease.
How an immune system regulator shifts the balance of immune cells
Researchers have provided new insight on the role of cyclic AMP (cAMP) in regulating the immune response.
Immune system upgrade
Theoretically, our immune system could detect and kill cancer cells.
Using the immune system as a defence against cancer
Research published today in the British Journal of Cancer has found that a naturally occurring molecule and a component of the immune system that can successfully target and kill cancer cells, can also encourage immunity against cancer resurgence.
First impressions go a long way in the immune system
An algorithm that predicts the immune response to a pathogen could lead to early diagnosis for such diseases as tuberculosis
Filming how our immune system kill bacteria
To kill bacteria in the blood, our immune system relies on nanomachines that can open deadly holes in their targets.
More Immune System News and Immune System Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: IRL Online
Original broadcast date: March 20, 2020. Our online lives are now entirely interwoven with our real lives. But the laws that govern real life don't apply online. This hour, TED speakers explore rules to navigate this vast virtual space.
Now Playing: Science for the People

#574 State of the Heart
This week we focus on heart disease, heart failure, what blood pressure is and why it's bad when it's high. Host Rachelle Saunders talks with physician, clinical researcher, and writer Haider Warraich about his book "State of the Heart: Exploring the History, Science, and Future of Cardiac Disease" and the ails of our hearts.
Now Playing: Radiolab

Falling
There are so many ways to fall–in love, asleep, even flat on your face. This hour, Radiolab dives into stories of great falls.  We jump into a black hole, take a trip over Niagara Falls, upend some myths about falling cats, and plunge into our favorite songs about falling. Support Radiolab by becoming a member today at Radiolab.org/donate.