Nav: Home

New tool facilitates genetic mapping of polyploid plants

November 08, 2019

An innovative genetic mapping system for polyploid species promises to facilitate the work of scientists and plant breeders, who use genomics to develop varieties that are more productive and resistant to disease or drought. Polyploids are organisms with more than two sets of chromosomes. Many plant species of great economic value, such as potato, wheat, cotton and sugarcane, are polyploids.

The research was conducted at the University of São Paulo's Luiz de Queiroz College of Agriculture (ESALQ-USP) in Piracicaba, São Paulo State (Brazil), with São Paulo Research Foundation - FAPESP's support. The results have been published in the journal G3: Genes, Genomes, Genetics.

The open-source software package is called MAPpoly and can be downloaded free of charge from the internet.

To date, only systems for genetic mapping of diploid species (2n) or simple polyploids (4n) have been available (n refers to the number of unique chromosomes in each cell). For complex polyploids (Xn, multiple copies), there are many more possible combinations of chromosomes, and the mapping process is much harder to perform.

Many crops have been genetically improved and are polyploid. Sweet potato (Ipomoea batatas), for example, is hexaploid (6n, with six copies of each chromosome). The varieties of sugarcane (Saccharum spp.) grown by sugar and ethanol producers in Brazil and elsewhere are between 6n and 14n, making them a daunting challenge from the standpoint of genetic research.

Finding a way to map the genetics of such complex plants was the initial research focus for Marcelo Mollinari, currently a postdoctoral fellow at North Carolina State University in Raleigh (USA). He developed much of his system while conducting postdoctoral research under the supervision of Antonio Augusto Franco Garcia, a professor in the Department of Genetics at ESALQ-USP, and with a scholarship from FAPESP.

"Using the knowledge and tools of statistical genetics, the study resulted in a novel method that robustly resolves this challenge," said Mollinari, who previously won a scholarship from FAPESP for a research internship at Purdue University in West Lafayette, Indiana (USA).

The study also received funding from the FAPESP Bioenergy Research Program (BIOEN) for the project "Genomic-assisted breeding of sugarcane: using molecular markers to understand the genetic architecture of quantitative traits and to implement marker-assisted selection", for which the principal investigator was Anete Pereira de Souza, a researcher at the University of Campinas's Center for Molecular Biology and Genetic Engineering (CBMEG-UNICAMP) in São Paulo State.

More precise information

Mollinari has been studying the development of polyploid genetic mapping systems ever since his master's research, initially for sugarcane. A system specifically designed to map complex polyploids was unavailable until now. Scientists and plant breeders used systems designed to map diploid organisms. They had to adapt the tools for statistical analysis to more complex organisms, and the mapping was imprecise as a result.

"When we receive the data, it's hard to understand what is happening at certain points in the chromosome. There can be many combinations, and the information is vague," Mollinari said.

To overcome this difficulty, Mollinari turned to the statistical technique known as hidden Markov modeling. "Our brain can read whole words even if letters are missing or interspersed with numbers. Markov models do the same thing: instead of looking at specific positions, you look at chromosomes as a whole and fill in the positions to obtain a complete view of the chromosomes' positions in the genome," he explained.

After developing the algorithms, Mollinari performed simulations to test the platform. One entailed mapping two varieties of potato (Atlantic and B1829-5) that had already been mapped using methods developed for diploids. He compared the results of these simulations with the existing maps to validate his system. He also performed a comparative simulation with Dutch software adapted for polyploids.

The new system can be used to map the genes of various polyploids, such as forages, kiwi and blueberry, as well as sugarcane. Researchers affiliated with at least seven institutions are using Mollinari's platform to analyze these species.

"BIOEN was the initial motivation for the project, which later expanded to cover much more than genetic mapping of sugarcane," Garcia said. The new method is also being used in studies of forage plants grown in Brazil.

Globally speaking, the most recent application is in Mollinari's own research in the US, where he is participating in a project to develop genomics tools for sweet potato breeding funded by the Bill & Melinda Gates Foundation with the aim of supporting growers of this food crop in sub-Saharan Africa.

Genetic improvement requires verifying how each chromosome was inherited by the offspring of crosses. This can be done with MAPpoly, and in conjunction with phenotype mapping, breeders will be able to develop varieties faster and more efficiently.

"It's a tool that facilitates the work done by breeders and can never replace them. They have the in-depth knowledge of traits and the expertise to select the traits required to develop new varieties," Mollinari said.
-end-
About São Paulo Research Foundation (FAPESP)

The São Paulo Research Foundation (FAPESP) is a public institution with the mission of supporting scientific research in all fields of knowledge by awarding scholarships, fellowships and grants to investigators linked with higher education and research institutions in the State of São Paulo, Brazil. FAPESP is aware that the very best research can only be done by working with the best researchers internationally. Therefore, it has established partnerships with funding agencies, higher education, private companies, and research organizations in other countries known for the quality of their research and has been encouraging scientists funded by its grants to further develop their international collaboration. You can learn more about FAPESP at http://www.fapesp.br/en and visit FAPESP news agency at http://www.agencia.fapesp.br/en to keep updated with the latest scientific breakthroughs FAPESP helps achieve through its many programs, awards and research centers. You may also subscribe to FAPESP news agency at http://agencia.fapesp.br/subscribe.

Fundação de Amparo à Pesquisa do Estado de São Paulo

Related Chromosomes Articles:

GPS for chromosomes: Reorganization of the genome during development
The spatial arrangement of genetic material within the cell nucleus plays an important role in the development of an organism.
Extra chromosomes in cancers can be good or bad
Extra copies of chromosomes are typical in cancerous tumor cells, but researchers taking a closer look find that some extra copies promote cancer growth while others actually inhibit cancer metastasis.
Scientists detail how chromosomes reorganize after cell division
Researchers have discovered key mechanisms and structural details of a fundamental biological process--how a cell nucleus and its chromosomal material reorganizes itself after cell division.
X marks the spot: recombination in structurally distinct chromosomes
A recent study from the laboratory of Stowers Investigator Scott Hawley, PhD, has revealed more details about how the synaptonemal complex performs its job, including some surprising subtleties in function.
How chromosomes change their shape during cell differentiation
Scientists from the RIKEN Center for Biosystems Dynamics Research have provided an explanation of how chromosomes undergo structural changes during cell differentiation.
Key similarities discovered between human and archaea chromosomes
A study led by Indiana University is the first to reveal key similarities between chromosomes in humans and archaea.
Science snapshots: Chromosomes, crystals, and drones
From Berkeley Lab: exploring human origins in the uncharted territory of our chromosomes; scientists grow spiraling new material; drones will fly for days with this new technology
Human artificial chromosomes bypass centromere roadblocks
Human artificial chromosomes (HACs) could be useful tools for both understanding how mammalian chromosomes function and creating synthetic biological systems, but for the last 20 years, they have been limited by an inefficient artificial centromere.
Does rearranging chromosomes affect their function?
Molecular biologists long thought that domains in the genome's 3D organization control how genes are expressed.
Super-resolution microscopy illuminates associations between chromosomes
Thanks to super-resolution microscopy, scientists have now been able to unambiguously identify physical associations between human chromosomes.
More Chromosomes News and Chromosomes Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Teaching For Better Humans 2.0
More than test scores or good grades–what do kids need for the future? This hour, TED speakers explore how to help children grow into better humans, both during and after this time of crisis. Guests include educators Richard Culatta and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#556 The Power of Friendship
It's 2020 and times are tough. Maybe some of us are learning about social distancing the hard way. Maybe we just are all a little anxious. No matter what, we could probably use a friend. But what is a friend, exactly? And why do we need them so much? This week host Bethany Brookshire speaks with Lydia Denworth, author of the new book "Friendship: The Evolution, Biology, and Extraordinary Power of Life's Fundamental Bond". This episode is hosted by Bethany Brookshire, science writer from Science News.
Now Playing: Radiolab

Dispatch 3: Shared Immunity
More than a million people have caught Covid-19, and tens of thousands have died. But thousands more have survived and recovered. A week or so ago (aka, what feels like ten years in corona time) producer Molly Webster learned that many of those survivors possess a kind of superpower: antibodies trained to fight the virus. Not only that, they might be able to pass this power on to the people who are sick with corona, and still in the fight. Today we have the story of an experimental treatment that's popping up all over the country: convalescent plasma transfusion, a century-old procedure that some say may become one of our best weapons against this devastating, new disease.   If you have recovered from Covid-19 and want to donate plasma, national and local donation registries are gearing up to collect blood.  To sign up with the American Red Cross, a national organization that works in local communities, head here.  To find out more about the The National COVID-19 Convalescent Plasma Project, which we spoke about in our episode, including information on clinical trials or plasma donation projects in your community, go here.  And if you are in the greater New York City area, and want to donate convalescent plasma, head over to the New York Blood Center to sign up. Or, register with specific NYC hospitals here.   If you are sick with Covid-19, and are interested in participating in a clinical trial, or are looking for a plasma donor match, check in with your local hospital, university, or blood center for more; you can also find more information on trials at The National COVID-19 Convalescent Plasma Project. And lastly, Tatiana Prowell's tweet that tipped us off is here. This episode was reported by Molly Webster and produced by Pat Walters. Special thanks to Drs. Evan Bloch and Tim Byun, as well as the Albert Einstein College of Medicine.  Support Radiolab today at Radiolab.org/donate.