Nav: Home

Copper hospital beds kill bacteria, save lives

November 08, 2019

Washington, DC - November 8, 2019 - A new study has found that copper hospital beds in the Intensive Care Unit (ICU) harbored an average of 95 percent fewer bacteria than conventional hospital beds, and maintained these low-risk levels throughout patients' stay in hospital. The research is published this week in Applied and Environmental Microbiology, a journal of the American Society for Microbiology.

"Hospital-acquired infections sicken approximately 2 million Americans annually, and kill nearly 100,000, numbers roughly equivalent to the number of deaths if a wide-bodied jet crashed every day," said coauthor Michael G. Schmidt, PhD, Professor of Microbiology and Immunology, Medical University of South Carolina, Charleston. They are the eighth leading cause of death in the US.

Hospital beds are among the most contaminated surfaces in patient care settings. "Despite the best efforts by environmental services workers, they are neither cleaned often enough, nor well enough," said Dr. Schmidt. Nonetheless, until recently, patient beds incorporating copper surfaces--long known to repel and kill bacteria--have not been commercially available.

Knowledge of copper's antimicrobial properties dates back to ancient Ayurveda, when drinking water was often stored in copper vessels to prevent illness. In the modern medical era, numerous studies have noted copper's antimicrobial properties.

However, until recently, no-one had designed acute-care hospital beds that enabled all high risk surfaces to be encapsulated in copper. "Based on the positive results of previous trials, we worked to get a fully encapsulated copper bed produced," said Dr. Schmidt. "We needed to convince manufacturers that the risk to undertake this effort was worthwhile."

This in situ study compared the relative contamination of intensive care unit (ICU) beds outfitted with copper rails, footboards, and bed controls to traditional hospital beds with plastic surfaces. Nearly 90 percent of the bacterial samples taken from the tops of the plastic rails had concentrations of bacteria that exceed levels considered safe.

"The findings indicate that antimicrobial copper beds can assist infection control practitioners in their quest to keep healthcare surfaces hygienic between regular cleanings, thereby reducing the potential risk of transmitting bacteria associated with healthcare associated infections," said Dr. Schmidt.

With the advent of copper encapsulated hospital beds, dividends will likely be paid in improved patient outcomes, lives saved, and healthcare dollars saved.
-end-
The American Society for Microbiology is the largest single life science society, composed of more than 30,000 scientists and health professionals. ASM's mission is to promote and advance the microbial sciences.

ASM advances the microbial sciences through conferences, publications, certifications and educational opportunities. It enhances laboratory capacity around the globe through training and resources. It provides a network for scientists in academia, industry and clinical settings. Additionally, ASM promotes a deeper understanding of the microbial sciences to diverse audiences.

American Society for Microbiology

Related Bacteria Articles:

Bacteria must be 'stressed out' to divide
Bacterial cell division is controlled by both enzymatic activity and mechanical forces, which work together to control its timing and location, a new study from EPFL finds.
How bees live with bacteria
More than 90 percent of all bee species are not organized in colonies, but fight their way through life alone.
The bacteria building your baby
Australian researchers have laid to rest a longstanding controversy: is the womb sterile?
Detecting bacteria in space
A new genomic approach provides a glimpse into the diverse bacterial ecosystem on the International Space Station.
Hopping bacteria
Scientists have long known that key models of bacterial movement in real-world conditions are flawed.
Bacteria uses viral weapon against other bacteria
Bacterial cells use both a virus -- traditionally thought to be an enemy -- and a prehistoric viral protein to kill other bacteria that competes with it for food according to an international team of researchers who believe this has potential implications for future infectious disease treatment.
Drug diversity in bacteria
Bacteria produce a cocktail of various bioactive natural products in order to survive in hostile environments with competing (micro)organisms.
Bacteria walk (a bit) like we do
EPFL biophysicists have been able to directly study the way bacteria move on surfaces, revealing a molecular machinery reminiscent of motor reflexes.
Using bacteria to create a water filter that kills bacteria
Engineers have created a bacteria-filtering membrane using graphene oxide and bacterial nanocellulose.
Probiotics are not always 'good bacteria'
Researchers from the Cockrell School of Engineering were able to shed light on a part of the human body - the digestive system -- where many questions remain unanswered.
More Bacteria News and Bacteria Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

Risk
Why do we revere risk-takers, even when their actions terrify us? Why are some better at taking risks than others? This hour, TED speakers explore the alluring, dangerous, and calculated sides of risk. Guests include professional rock climber Alex Honnold, economist Mariana Mazzucato, psychology researcher Kashfia Rahman, structural engineer and bridge designer Ian Firth, and risk intelligence expert Dylan Evans.
Now Playing: Science for the People

#540 Specialize? Or Generalize?
Ever been called a "jack of all trades, master of none"? The world loves to elevate specialists, people who drill deep into a single topic. Those people are great. But there's a place for generalists too, argues David Epstein. Jacks of all trades are often more successful than specialists. And he's got science to back it up. We talk with Epstein about his latest book, "Range: Why Generalists Triumph in a Specialized World".
Now Playing: Radiolab

Dolly Parton's America: Neon Moss
Today on Radiolab, we're bringing you the fourth episode of Jad's special series, Dolly Parton's America. In this episode, Jad goes back up the mountain to visit Dolly's actual Tennessee mountain home, where she tells stories about her first trips out of the holler. Back on the mountaintop, standing under the rain by the Little Pigeon River, the trip triggers memories of Jad's first visit to his father's childhood home, and opens the gateway to dizzying stories of music and migration. Support Radiolab today at Radiolab.org/donate.