Nav: Home

New study suggests 'Pac-Man-like' mergers could explain massive, spinning black holes

November 08, 2019

Scientists have reported detecting gravitational waves from 10 black hole mergers to date, but they are still trying to explain the origins of those mergers. The largest merger detected so far seems to have defied previous models because it has a higher spin and mass than the range thought possible. A group of researchers, including Rochester Institute of Technology Assistant Professor Richard O'Shaughnessy, has created simulations that could explain how the merger happened.

In a new paper published in Physical Review Letters, the researchers suggest that such large mergers could happen just outside supermassive black holes at the center of active galactic nuclei. Gas, stars, dust and black holes become caught in a region surrounding supermassive black holes known as the accretion disk. The researchers suggest that as black holes circle around in the accretion disk, they eventually collide and merge to form a bigger black hole, which continues to devour smaller black holes, becoming increasingly large in what O'Shaughnessy calls "Pac-Man-like" behavior.

"This is a very tantalizing prospect for those of us who work in this field," said O'Shaughnessy, a member of RIT's Center for Computational Relativity and Gravitation (CCRG). "It offers a natural way to explain high mass, high spin binary black hole mergers and to produce binaries in parts of parameter space that the other models cannot populate. There is no way to get certain types of black holes out of these other formation channels."

As the LIGO and Virgo collaboration continue to hunt for gravitational waves, O'Shaughnessy and his fellow researchers hope to find signatures of large, spinning black holes that could help confirm their models. If their assumptions are correct, it could help us better understand how the cosmic web of galaxies assembles.

"This could be a unique way of probing the physics around these supermassive black holes in a way that could not be probed in any other way," said O'Shaughnessy. "It offers unique insight into how the centers of galaxies grow, which is of course essential to understanding how galaxies as a whole grow, which explains most of the structure in the universe."
-end-
RIT's CCRG has a large and active group of 18 faculty, students and postdoctoral researchers involved in the LIGO Scientific Collaboration. For more information, visit the CCRG website: https://ccrg.rit.edu/ For more information, contact Luke Auburn at 585-475-4335, luke.auburn@rit.edu, or on Twitter: @lukeauburn.

Rochester Institute of Technology

Related Black Holes Articles:

Staining cycles with black holes
In the treatment of tumors, microenvironment plays an important role.
Black holes sometimes behave like conventional quantum systems
A group of Skoltech researchers led by Professor Anatoly Dymarsky have studied the emergence of generalized thermal ensembles in quantum systems with additional symmetries.
Scientists may have discovered whole new class of black holes
New research shows that astronomers' search for black holes might have been missing an entire class of black holes that they didn't know existed.
Growing old together: A sharper look at black holes and their host galaxies
The 'special relationship' between supermassive black holes (SMBHs) and their hosts -- something astronomers and physicists have observed for quite a while -- can now be understood as a bond that begins early in a galaxy's formation and has a say in how both the galaxy and the SMBH at its center grow over time, according to a new study from Yale University.
Are black holes made of dark energy?
Two University of Hawaii at Manoa researchers have identified and corrected a subtle error that was made when applying Einstein's equations to model the growth of the universe.
Telescopes in space for even sharper images of black holes
Astronomers have just managed to take the first image of a black hole, and now the next challenge facing them is how to take even sharper images, so that Einstein's Theory of General Relativity can be tested.
Can entangled qubits be used to probe black holes?
Information escapes from black holes via Hawking radiation, so it should be possible to capture it and use it to reconstruct what fell in: if given time longer than the age of the universe.
How black holes power plasma jets
Cosmic robbery powers the jets streaming from a black hole, new simulations reveal.
The orderly chaos of black holes
During the formation of a black hole a bright burst of very energetic light in the form of gamma-rays is produced, these events are called gamma-ray bursts.
Mystery of coronae around supermassive black holes deepens
Researchers have used observations from the ALMA radio observatory to measure, for the first time, the strength of magnetic fields near two supermassive black holes at the centers of an important type of active galaxies.
More Black Holes News and Black Holes Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Climate Mindset
In the past few months, human beings have come together to fight a global threat. This hour, TED speakers explore how our response can be the catalyst to fight another global crisis: climate change. Guests include political strategist Tom Rivett-Carnac, diplomat Christiana Figueres, climate justice activist Xiye Bastida, and writer, illustrator, and artist Oliver Jeffers.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Speedy Beet
There are few musical moments more well-worn than the first four notes of Beethoven's Fifth Symphony. But in this short, we find out that Beethoven might have made a last-ditch effort to keep his music from ever feeling familiar, to keep pushing his listeners to a kind of psychological limit. Big thanks to our Brooklyn Philharmonic musicians: Deborah Buck and Suzy Perelman on violin, Arash Amini on cello, and Ah Ling Neu on viola. And check out The First Four Notes, Matthew Guerrieri's book on Beethoven's Fifth. Support Radiolab today at Radiolab.org/donate.