New study first to reveal growth rates of deep-sea coral communities

November 08, 2019

A collaboration between researchers at the University of Hawai'i (UH) at Manoa School of Ocean and Earth Science and Technology (SOEST), Hawai'i Pacific University (HPU) and the National Oceanic and Atmospheric Administration (NOAA) revealed for the first time growth rates of deep-sea coral communities and the pattern of colonization by various species.

The scientific team used the UH Manoa Hawai'i Undersea Research Laboratory's submersible and remotely-operated vehicles to examine coral communities on submarine lava flows of various ages on the leeward flank of the Island of Hawai'i. Utilizing the fact that the age of the lava flows--between 61 and 15,000 years--is the oldest possible age of the coral community growing there, they observed the deep-water coral community in Hawai'i appears to undergo a pattern of ecological succession over time scales of centuries to millennia.

The study, published this week, reported Coralliidae, pink coral, were the pioneering taxa, the first to colonize after lava flows were deposited. With enough time, the deep-water coral community showed a shift toward supporting a more diverse array of tall, slower growing taxa: Isididae, bamboo coral, and Antipatharia, black coral. The last to colonize was Kulamanamana haumeaae, gold coral, which grows over mature bamboo corals, and is the slowest growing taxa within the community.

"This study was the first to estimate the rate of growth of a deep-sea corals on a community scale," said Meagan Putts, lead author of the study and research associate at SOEST's Joint Institute for Marine and Atmospheric Research (JIMAR). "This could help inform the management of the precious coral fishery in Hawai'i. Furthermore, Hawai'i is probably the only place in the world where such a study could have been performed due to its continuous and well known volcanology."

"Prior to beginning this work, it was unclear if a pattern of colonization existed for deep-sea coral communities and in what time frame colonization would occur," said Putts. "When put into context with what we do know about the life history of Hawaiian deep-water corals, the results of this work make sense."   The fastest growing species with calcium-based skeletons, a ubiquitous building material in the deep ocean, Coralliidae, were the first to colonize and in the largest quantities. Corals with protein-based or partially protein-based skeletons, were seen later in the colonization timeline because the formation of proteinaceous components requires organic nitrogen, a much more limiting resource in the deep sea. Gold coral, Kulamanamana haumeaae, also has a protein-based skeleton but was the last species to be seen within the patter of community development because it requires a host colony of bamboo coral to present and of a large enough size for colonization.

This study has important conservation and sustainability implications regarding these ecosystems that had never before been ecologically quantified. This research also provides insights about recovery of deep sea ecosystems that may be disturbed by activities such as fishing and mining.

"Further," said Putts, "as the Island of Hawai'i continues to have periodic eruptions producing very recent deep-water lava flows, the last in May 2018, there are opportunities to study initial settlement patterns and appraise the impact hot, turbid, mineral-rich water from new flows has on coral communities."
-end-


University of Hawaii at Manoa

Related Corals Articles from Brightsurf:

The Great Barrier Reef has lost half its corals
Populations of corals on the Great Barrier Reef have halved in the past three decades - in both shallow and deeper water, and across virtually all species - especially branching and table-shaped corals.

A factor limiting recovery from bleaching in corals
A joint research team has examined the effect of pre-exposure to heat stress on the capacity of symbiotic algae to infect cnidarian hosts using the Aiptasia (sea-anemone)-zooxanthellae (algae) model system.

Bleaching affects aquarium corals, too
A world-first study examines the temperature thresholds of Australian aquarium corals and finds they are at risk under climate change.

How climate killed corals
A squad of climate-related factors is responsible for the massive Australian coral bleaching event of 2016.

Iron deficiency in corals?
When iron is limited, the microalgae that live within coral cells change how they take in other trace metals, which could have cascading effects on vital biological functions and perhaps exacerbate the effects of climate change on corals.

3D-printed corals could improve bioenergy and help coral reefs
Researchers have designed bionic 3D-printed corals that could help energy production and coral reef research.

Soft corals near Virgin Islands recover from hurricanes, but stony corals declining
Soft corals at three sites in the US Virgin Islands were able to recover from the destructive effects of nearly back-to-back Category 5 storms in 2017, but research by a UB marine ecologist puts that seemingly good news in the context of an ecosystem that is dramatically changing.

Stressed corals set up progeny for a better life
First evidence that animal DNA methylation patterns can be passed to the next generation.

Algae team rosters could help ID 'super corals'
U.S. and Australian researchers have found a potential tool for identifying stress-tolerant ''super corals.'' In experiments that simulated climate change stress, researchers found corals that best survived had symbiotic algae communities with similar features.

How do corals make the most of their symbiotic algae?
Corals depend on their symbiotic relationships with the algae that they host.

Read More: Corals News and Corals Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.