Crucial genetic diversity enzyme long sought by biologists discovered by scientists at The Scripps Research Institute

November 09, 2001

Simultaneous reports by two teams at The Scripps Research Institute (TSRI), led by Professor Paul Russell, Ph.D., and Associate Professor Clare H. McGowan, Ph.D., identify the "resolvase" enzyme that may be responsible for generating genetic diversity during sexual reproduction and could be a target for improved anti-cancer therapy.

In the current issues of the journals Cell and Molecular Cell, the researchers have published papers that describe Mus81, a resolvase enzyme of the fission yeast Schizosaccharomyces pombe, and its human analog.

Resolvase is essential for a crucial step in DNA recombination, says Russell, because it is the molecule that allows two chromosomes to cross over. "It is one of the most important enzymes involved in genetic recombination," he says.

Genetic recombination occurs in the process of meiosis, when chromosomes from the mother and father become paired. The aligned chromosomes break and DNA strands from both chromosomes become intertwined at the point of the cross-over. At the molecular level, this combining happens at what is called a "Holliday junction," where the strands of DNA literally cross one another.

However, the DNA must at some point be uncrossed by cutting across the Holliday junction in the last crucial step in genetic recombination. This is the responsibility of resolvase enzymes. The final product of this process is a pair of new chromosomes that have genetic material from both parents.

"[Resolvase] is the molecule that allows children to inherit a unique mixture of traits from mother and father, without it we wouldn't have the infinite range of genetic combinations that makes us all different," says McGowan.

It has long been known that there should be such enzymes, and several examples from other organisms, such as bacteria, have been around for years. And for years, scientists have searched for the resolvase gene in eukaryotic cells, such as humans and yeast, which have linear chromosomes packaged in a nucleus. Until now, none has been found.

Russell and his colleagues showed that Mus81 is an essential component of the resolvase enzyme in yeast cells. Mus81 is structurally unrelated to bacterial resolvases. In a related work, McGowan's study demonstrated that a human analog of the Mus81 protein also has resolvase activity.

The identification of a human resolvase may have a profound effect on cancer therapy because the enzyme also has an important role in cell replication.

When cells are replicating their DNA prior to division, they have mechanisms to sense if the DNA is damaged. When the DNA is damaged, a cell's replication machinery will stop, spontaneously back up and form a Holliday junction. Resolvase recombines DNA strands at Holliday junctions and this allows the replication machinery to bypass the damaged DNA.

Cancer cells are often defective in the mechanisms that sense damaged DNA. Russell and McGowan envision that treatment of tumors with chemotherapeutics that damage DNA, combined with rational targeting of resolvase activity, could be a highly potent cancer treatment.

This research is also another vindication of fission yeast as a model organism for human biology. Resembling humans, S. pombe cells reproduce sexually through meiosis and have a similar cell cycle. Because of the ease of manipulating yeast genetically and because of their uncanny similarities, S. pombe is a good model system for studying the human cell cycle.

"S. pombe has contributed enormously towards understanding the human cell cycle and towards advances in the treatment and understanding of cancer," says McGowan.

The research article "Mus81-Eme1 Are Essential Components of a Holliday Junction Resolvase" is authored by Michael N. Boddy, Pierre-Henri L. Gaillard, W. Hayes McDonald, Paul Shanahan, John R. Yates 3rd, and Paul Russell and appears in the November 16, 2001 issue of Cell.

The research article "Human Mus81-Associated Endonuclease Cleaves Holliday Junctions In Vitro" is authored by Xiao-Bo Chen, Roberta Melchionna, Cecile-Marie Denis, Pierre-Henri L. Gaillard, Alessandra Blasina, Inez Van de Weyer, Michael N. Boddy, Paul Russell, Jorge Vialard, and Clare H. McGowan and appears in the November, 2001 issue of Molecular Cell.
-end-
The research was funded by the National Institutes of Health, by The R.W. Johnson Pharmaceutical Research Institute, and by the Janssen Research Foundation.

Scripps Research Institute

Related Cancer Articles from Brightsurf:

New blood cancer treatment works by selectively interfering with cancer cell signalling
University of Alberta scientists have identified the mechanism of action behind a new type of precision cancer drug for blood cancers that is set for human trials, according to research published in Nature Communications.

UCI researchers uncover cancer cell vulnerabilities; may lead to better cancer therapies
A new University of California, Irvine-led study reveals a protein responsible for genetic changes resulting in a variety of cancers, may also be the key to more effective, targeted cancer therapy.

Breast cancer treatment costs highest among young women with metastic cancer
In a fight for their lives, young women, age 18-44, spend double the amount of older women to survive metastatic breast cancer, according to a large statewide study by the University of North Carolina at Chapel Hill.

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.

Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.

Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.

Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.

More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.

New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.

American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.

Read More: Cancer News and Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.