UCLA discovery will aid in treatment of patients with a deadly brain cancer

November 09, 2005

Researchers at UCLA's Jonsson Cancer have identified key characteristics in certain deadly brain tumors that make them 51 times more likely to respond to a specific class of drugs than tumors in which the molecular signature is absent.

The discovery of the telltale molecular signature - the expression of a mutant protein and the presence of a tumor suppressor protein called PTEN - will allow researchers to identify patients who are likely to respond to the drug treatment before they undergo therapies that are not likely to work, said Dr. Paul Mischel, an associate professor of pathology and laboratory medicine and a Jonsson Cancer Center researcher.

Mischel and his colleagues say in an article in the Nov. 10 issue of the New England Journal of Medicine that the discovery could change the way doctors treat glioblastomas, the most common type of malignant brain tumor and one of the those lethal forms of cancer.

"In a biologically aggressive disease like glioblastoma, it's vital to be able to stratify patients up front so we can treat them with drugs that they are more likely to respond to," Mischel said. "This will help prevent patients from having therapies that are much more toxic and less beneficial. With the short survival times associated with glioblastoma, that is critical."

Between 8,000 and 10,000 new cases of glioblastoma will be diagnosed in Americans this year. Average survival is less than a year, according to the American Cancer Society. Although treatment may prolong life, most malignant brain tumors are not curable, making the search for better treatments even more urgent, Mischel said.

A protein called epidermal growth factor receptor (EGFR) is commonly amplified in glioblastoma, making it a prime focus for therapies. Drugs such as Tarceva and Iressa target EGFR, blocking the cell signals that drive amplification of the protein and speed cancer growth. A subset of glioblastoma patients responded to Tarceva and Iressa, but it was not clear what characteristics made them respond to these drugs. There had to be critical molecular factors that determined response, Mischel said.

He and his team set out to find the molecular determinants that indicated which patients would respond best to EGFR blockers. Previous UCLA research in brain and other cancers suggested that the key might be the interaction of the PTEN protein and a mutant protein called EGFRvIII. About half of patients with amplified EGFR also have this mutant protein.

The UCLA team and their collaborators studied a subset of 26 glioblastoma patients who either responded very well or very poorly to EGFR blocking drugs and developed a way to test their brain tumor tissue for the presence of both the mutant and PTEN proteins. Mischel's team found that patients with both genetic variations were 51 times more likely to respond to EGFR blockers. They also lived five times longer after initiating therapy than those without the variation, surviving 253 days versus 50 days.

To confirm their promising work, Mischel and his team obtained tissue samples from 33 brain cancer patients treated at another facility without knowing who the responders were. They were able to independently replicate their results, confirming that those with both genetic variations were more likely to respond to EGFR blocking drugs.

The study shows that glioblastoma patients can respond to targeted agents, and suggests that patients likely to benefit from treatment can be identified by molecular testing. The study also raised the possibility that patients whose tumors lack the genetic variations in the molecular signature could possibly be treated with drugs to make them more sensitive to EGFR blockers.

Of the 8,000 to 10,000 glioblastoma patients diagnosed each year, about 10 to 20 percent have the combination of the mutant and PTEN proteins, Mischel said. The next step is a prospective study, determining the molecular signature of patients' tumors and directing those with the right protein combination to EGFR blocking therapies. Mischel's team also is working to uncover the molecular signatures in the tumors of non-responders so they can determine what therapies might be most effective for them.

"This is a much more hopeful period now in cancer research," Mischel said. "Genomic and proteomic technologies are helping us begin to understand the underlying molecular features of disease, and new drugs are making it possible to safely and specifically target pathways that are altered in cancer cells. This was impossible five years ago. Glioblastoma is still a difficult disease, but the idea that it may be possible to induce long-term disease suppression gives us reason for hope."

The study, Mischel said, also may have important implications in other cancers.

"Many cancers have a similar combination of a mutant cancer-causing protein and either the expression or loss of the PTEN protein," Mischel said. "The interactions of the two may be important in determining response to targeted agents."
-end-
Mischel's research was funded in part by the National Institute of Neurological Disorders and Stroke, the National Cancer Institute, Accelerate Brain Cancer Cure and UCLA's Jonsson Comprehensive Cancer Center, which comprises more than 240 researchers and clinicians engaged in research, prevention, detection, treatment and education. One of the nation's largest comprehensive cancer centers, the Jonsson center is dedicated to promoting research and translating the results into leading-edge clinical studies. In July 2005, the Jonsson Cancer Center was named the best cancer center in the western United States by U.S. News & World Report, a ranking it has held for six consecutive years.

University of California - Los Angeles

Related Cancer Articles from Brightsurf:

New blood cancer treatment works by selectively interfering with cancer cell signalling
University of Alberta scientists have identified the mechanism of action behind a new type of precision cancer drug for blood cancers that is set for human trials, according to research published in Nature Communications.

UCI researchers uncover cancer cell vulnerabilities; may lead to better cancer therapies
A new University of California, Irvine-led study reveals a protein responsible for genetic changes resulting in a variety of cancers, may also be the key to more effective, targeted cancer therapy.

Breast cancer treatment costs highest among young women with metastic cancer
In a fight for their lives, young women, age 18-44, spend double the amount of older women to survive metastatic breast cancer, according to a large statewide study by the University of North Carolina at Chapel Hill.

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.

Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.

Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.

Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.

More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.

New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.

American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.

Read More: Cancer News and Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.