Nav: Home

With BYU partner, FSU's Magnet Lab researchers deciphering flu virus

November 09, 2006

TALLAHASSEE, Fla. -- As the Northern Hemisphere braces for another flu season, researchers at Florida State University's National High Magnetic Field Laboratory are making strides toward better understanding the mechanics of the virus that causes it -- a virus that kills between one-quarter and one-half million people each year.

Tim Cross, director of the lab's Nuclear Magnetic Resonance (NMR) program, and collaborators from Brigham Young University are trying to understand the minute parts of the highly virulent Influenza Type A virus. To do that, they are using all of the magnet lab's NMR resources, including its 15-ton, 900-megahertz magnet, to produce a detailed picture of the virus's skin.

"Using the magnet helps us build a blueprint for a virus's mechanics of survival," said Cross, who also is a professor of chemistry and biochemistry at FSU. "The more detailed the blueprint, the better our chances of developing drugs capable of destroying it."

The only magnet of its kind in the world, the "900" is critical to the project's process. Otherwise, an image this complicated would be impossible to obtain.

Cross and David Busath, a biophysicist at Brigham Young University, recently discovered key components of the protein holes, or "channels," in the influenza viral skin. These components lead to unique chemical reactions that are thought to be important clues for understanding how the channels regulate whether the virus can distribute its genes into host cells and reproduce or not. The researchers' findings were published recently in the Proceedings of the National Academy of Sciences.

"This is a viral structure we haven't seen before," Busath said. "And yet, through these tiny little doors, acids must come in and DNA must go out if the virus is to survive. The idea is to block the door to prevent the normal function required for the virus to replicate."

Once researchers understand how these channels are selective for acid, they can use that knowledge to fashion novel drugs capable of more effectively killing the virus.

-end-

By Amy Winters November 2006

The work is funded by a five-year, multimillion-dollar grant from the National Institutes of Health. Other authors on the Proceedings of the National Academy of Sciences paper are Jun Hu, Riqiang Fu, Katsuyuki Nishimura, Li Zhang and Huan-Xiang Zhou, all of FSU, and Viksita Vijayvergiya, a former postdoctoral fellow at BYU.

NEWS MEDIA: To obtain an electronic illustration of an influenza virus, call FSU's Office of News and Public Affairs at (850) 644-4030.

Florida State University
New insights into how the Zika virus causes microcephaly
Scientists have uncovered why Zika virus may specifically target neural stem cells in the developing brain, potentially leading to microcephaly.
New Zika virus inhibitor identified
Compound could serve as basis for drugs to prevent neurological complications of Zika.
Zeroing in on the Zika virus
Hobman has been announced as one of three Canadian scientists who have received funding from the Canadian Institutes of Health Research (CIHR) for their teams to study the Zika virus.
What does it take for an AIDS virus to infect a person?
Researchers examined the characteristics of HIV-1 strains that were successful in traversing the genital mucosa that forms a boundary to entry by viruses and bacteria.
Cough virus kills liver cancer cells and hepatitis virus
A virus that causes childhood coughs and colds could help in the fight against primary liver cancer, according to a study.
Characterizing the Zika virus genome
The sudden emergence of the Zika virus epidemic in Latin America in 2015-16 has caught the scientific world unawares.
Discovery of new Hepatitis C virus mechanism
Researchers at Osaka University, Japan uncovered the mechanisms that suppress the propagation of the hepatitis C virus with the potential of improving pathological liver conditions.
What does Zika virus mean for the children of the Americas?
A special communication article published online by JAMA Pediatrics explores whether new paradigms in child health may emerge because of Zika virus.
Predicting the spread of the Zika virus
A new tool by Japan-based researchers predicts the risk of Zika virus importation and local transmission for 189 countries.
An old new weapon against emerging Chikungunya virus
Researchers utilize existing drugs to interfere with host factors required for replication of Chikungunya virus.

Best Science Podcasts 2017

We have hand picked the best science podcasts for 2017. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.

Now Playing: Radiolab

Truth Trolls
Today, a third story of folks relentlessly searching for the truth. But this time, the truth seekers are an unlikely bunch... internet trolls.


Now Playing: TED Radio Hour

Rethinking School
For most of modern history, humans have placed smaller humans in institutions called schools. But what parts of this model still work? And what must change? This hour, TED speakers rethink education.TED speakers include teacher Tyler DeWitt, social entrepreneur Sal Khan, international education expert Andreas Schleicher, and educator Linda Cliatt-Wayman.