Antarctica glacier retreat creates new carbon dioxide store

November 09, 2009

Large blooms of tiny marine plants called phytoplankton are flourishing in areas of open water left exposed by the recent and rapid melting of ice shelves and glaciers around the Antarctic Peninsula. This remarkable colonisation is having a beneficial impact on climate change. As the blooms die back phytoplankton sinks to the sea-bed where it can store carbon for thousands or millions of years.

Reporting this week in the journal Global Change Biology, scientists from British Antarctic Survey (BAS) estimate that this new natural 'sink' is taking an estimated 3.5 million tonnes* of carbon from the ocean and atmosphere each year.

Lead author, Professor Lloyd Peck from BAS says,

"Although this is a small amount of carbon compared to global emissions of greenhouse gases in the atmosphere it is nevertheless an important discovery. It shows nature's ability to thrive in the face of adversity. We need to factor this natural carbon-absorption into our calculations and models to predict future climate change. So far we don't know if we will see more events like this around the rest of Antarctica's coast but it's something we'll be keeping a close eye on."

Professor Peck and his colleagues compared records of coastal glacial retreat with records of the amount of chlorophyll (green plant pigment essential for photosynthesis) in the ocean. They found that over the past 50 years, melting ice has opened up at least 24,000 km2 of new open water (an area similar to the size of Wales) - and this has been colonised by carbon-absorbing phytoplankton. According to the authors this new bloom is the second largest factor acting against climate change so far discovered on Earth (the largest is new forest growth on land in the Arctic).

Professor Peck continues, "Elsewhere in the world human activity is undermining the ability of oceans and marine ecosystems to capture and store carbon. At present, there is little change in ice shelves and coastal glaciers away from the Antarctic Peninsula, but if more Antarctic ice is lost as a result of climate change then these new blooms have the potential to be a significant biological sink for carbon."
-end-
Issued by the British Antarctic Survey Press Office
Heather Martin, Tel: +44 (0)1223 221414; mobile: 07740 822229 email: hert@bas.ac.uk;
Linda Capper, Tel: +44 (0)1223 221448; mobile: 07714 233744 email: lmca@bas.ac.uk

Author's contact details:

Professor Lloyd Peck. Tel: +44 (0)1223 221603; email LSPE@bas.ac.uk

Notes for editors: Stunning broadcast-quality footage and stills of Antarctica, as well as location maps are available from the BAS Press Office as above.

Negative feedback in the cold: ice retreat produces new carbon sinks in Antarctica by Lloyd S. Peck, David K. A. Barnes, Alison J Cook, Andrew H Fleming and Andrew Clarke is published online this month in the journal Global Change Biology.

Phytoplankton use chlorophyll and other pigments to absorb sunlight for photosynthesis, and when they grow in large numbers, they change the way the ocean surface reflects sunlight. They are eaten by krill and are the foundation of the ocean food web. Animals such as sponges and corals also consume phytoplankton. They can live for decades to hundreds of years and when they die they form mats on the seabed that are buried under sedimentation.

*The 3.5 million tonnes of carbon taken from the ocean and atmosphere is equivalent to 12.8 million tonnes of CO2.

Global carbon dioxide emissions from fossil fuel combustion and land use change reached 8.7 billion tonnes of carbon in 2007.

Sea ice loss and retreat of coastal glaciers on the Antarctic Peninsula were studied using historical accounts, aerial photographs and satellite images. This shows that seven of the major ice shelves and 87% of the 244 marine glaciers have retreated over the past 50 years.

The 24,000 km2 of new open water is approximately the size of Vermont, New Hampshire, New Jersey, Belize or Israel.

A glacier -- is a 'river of ice' that is fed by the accumulation of snow. Glaciers drain ice from the mountains to lower levels, where the ice either melts, breaks away into the sea as icebergs, or feeds into an ice shelf.

Ice sheet -- is the huge mass of ice, up to 4km thick that covers bedrock in Antarctica or Greenland. It flows from the centre of the continent towards the coast where it feeds ice shelves.

Ice shelf -- is the floating extension of the grounded ice sheet. It is composed of freshwater ice that originally fell as snow, either in situ or inland and brought to the ice shelf by glaciers. As they are already floating, any disintegration will have no impact on sea level. Sea level will rise only if the ice held back by the ice shelf flows more quickly onto the sea.

British Antarctic Survey (BAS), a component of the Natural Environment Research Council, delivers world-leading interdisciplinary research in the Polar Regions. Its skilled science and support staff based in Cambridge, Antarctica and the Arctic, work together to deliver research that underpins a productive economy and contributes to a sustainable world. Its numerous national and international collaborations, leadership role in Antarctic affairs and excellent infrastructure help ensure that the UK maintains a world leading position. BAS has over 450 staff and operates five research stations, two Royal Research Ships and five aircraft in and around Antarctica

British Antarctic Survey

Related Climate Change Articles from Brightsurf:

Are climate scientists being too cautious when linking extreme weather to climate change?
Climate science has focused on avoiding false alarms when linking extreme events to climate change.

Mysterious climate change
New research findings underline the crucial role that sea ice throughout the Southern Ocean played for atmospheric CO2 in times of rapid climate change in the past.

Mapping the path of climate change
Predicting a major transition, such as climate change, is extremely difficult, but the probabilistic framework developed by the authors is the first step in identifying the path between a shift in two environmental states.

Small change for climate change: Time to increase research funding to save the world
A new study shows that there is a huge disproportion in the level of funding for social science research into the greatest challenge in combating global warming -- how to get individuals and societies to overcome ingrained human habits to make the changes necessary to mitigate climate change.

Sub-national 'climate clubs' could offer key to combating climate change
'Climate clubs' offering membership for sub-national states, in addition to just countries, could speed up progress towards a globally harmonized climate change policy, which in turn offers a way to achieve stronger climate policies in all countries.

Review of Chinese atmospheric science research over the past 70 years: Climate and climate change
Over the past 70 years since the foundation of the People's Republic of China, Chinese scientists have made great contributions to various fields in the research of atmospheric sciences, which attracted worldwide attention.

A CERN for climate change
In a Perspective article appearing in this week's Proceedings of the National Academy of Sciences, Tim Palmer (Oxford University), and Bjorn Stevens (Max Planck Society), critically reflect on the present state of Earth system modelling.

Fairy-wrens change breeding habits to cope with climate change
Warmer temperatures linked to climate change are having a big impact on the breeding habits of one of Australia's most recognisable bird species, according to researchers at The Australian National University (ANU).

Believing in climate change doesn't mean you are preparing for climate change, study finds
Notre Dame researchers found that although coastal homeowners may perceive a worsening of climate change-related hazards, these attitudes are largely unrelated to a homeowner's expectations of actual home damage.

Older forests resist change -- climate change, that is
Older forests in eastern North America are less vulnerable to climate change than younger forests, particularly for carbon storage, timber production, and biodiversity, new research finds.

Read More: Climate Change News and Climate Change Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.