Scientists successfully reprogram blood cells

November 09, 2009

CINCINNATI - Researchers have transplanted genetically modified hematopoietic stem cells into mice so that their developing red blood cells produce a critical lysosomal enzyme -preventing or reducing organ and central nervous system damage from the often-fatal genetic disorder Hurler's syndrome.

The research team from Cincinnati Children's Hospital Medical Center reports its preclinical laboratory results this week in the early edition of Proceedings of the National Academy of Sciences.

The study suggests a new approach to molecular gene therapy and a much-needed improved treatment option for children with Hurler's syndrome, said Dao Pan, Ph.D., a researcher in the Division of Experimental Hematology/Cancer Biology at Cincinnati Children's and the study's principal author. It also is the first study to demonstrate that developing red blood cells can be used to produce lysosomal enzymes.

"The idea behind this is gene insertion so that after one treatment a person would be cured," said Dr. Pan. "In the mouse models receiving this treatment, the pathology of the peripheral organs tested was completely normalized. And although not as complete, we also saw significantly improved neurological function and brain pathology."

Hurler's syndrome is the severe form of MPS type1, or mucopolysaccharidoses. MPS type1 and similar genetic disorders are known as lysosomal storage disease, which are caused by the body's inability to produce specific lysosomal enzymes. Lysosomes, part of a cell's internal machinery, help the body's cells break down large molecules and recycle materials to fuel the healthy development and maintenance of vital organ and nerve tissues.

The lysosomes in the cells of children with Hurler syndrome do not have a vital enzyme called IDUA (/a-/L-idunronidase). This causes their cells to accumulate too much of a class of biochemical known as mucopolysaccharides, in this instance dermatan sulfate and heparin sulfate. This excess accumulation results in progressive tissue damage to organs and the central nervous system and typically results in early death.

Dr. Pan and her colleagues initially experimented on the cells of patients with Hurler syndrome that were cultured in the laboratory. They successfully used what is called a viral vector (in this case a lentivirus) to insert a healthy version of the IDUA gene into early stage red blood cell cultures, and a hybrid promoter gene, to prompt the cells to produce the IDUA enzyme. This could allow the enzyme to be absorbed by a patient's other cells to correct functional defects in the lysosomes.

Encouraged by the initial cell experiments, the research team next cultured hematopoietic stem cells taken from mouse models of MPS I. They did so using the same hybrid promoter gene from the earlier experiments to reprogram the stem cells to produce IDUA. They then performed bone marrow transplantation on the MPS I mice with the reprogrammed cells. The developing red blood cells in these mice produced large amounts of IDUA in the blood stream, which was absorbed by other cells that help make tissues for vital organs and the central nervous system.

Of particular interest to Dr. Pan and her colleagues was the ability of the IDUA in circulating blood to somehow bypass the blood brain barrier - normally a severe limitation in treating diseases that affect the central nervous system.

Besides Hurler syndrome, Dr. Pan said the study will have positive implications in the treatment of many other lysosomal storage diseases, which affect different parts of the body, depending on the specific enzyme deficiency. She also said this particular approach to gene therapy carries considerably less risk of stimulating cancer genes, which has been a concern with some forms of gene therapy. This is because the researchers used a promoter gene specific to red cells to stimulate IDUA production, and they did so in just one specific subset of blood cells (and not in any other offspring from genetically modified blood stem cells).

One current treatment method for Hurler syndrome includes bone marrow transplant from a healthy matched donor. These treatments have a mortality rate of 20 to 30 percent if patients can find a matched donor. Dr. Pan said reprogramming a patient's own developing red blood cells by gene therapy would provide a viable option for patients who cannot find a donor and avoid potential complications caused by an immune response to donor cells.

Another current treatment option is a pharmaceutical version of IDUA, although the therapy is limited because it cannot cross the blood brain barrier to address problems in the central nervous system. It also requires repeated life-long treatment.

Dr. Pan said additional research is needed to further verify the viral vectors used by the researchers, to evaluate the efficacy of this approach in larger animal models and to explain the molecular reasons for its success, especially the ability to cross the blood-brain barrier.
-end-
The study included the collaboration of other researchers at Cincinnati Children's, including the divisions of Human Genetics, Bone Marrow Transplantation and Immunology and Department of Pediatrics at the University of Cincinnati College of Medicine. The study was funded by the National Institutes of Health and a grant from the University Research Council at the University of Cincinnati.

Cincinnati Children's Hospital Medical Center

Related Stem Cells Articles from Brightsurf:

SUTD researchers create heart cells from stem cells using 3D printing
SUTD researchers 3D printed a micro-scaled physical device to demonstrate a new level of control in the directed differentiation of stem cells, enhancing the production of cardiomyocytes.

More selective elimination of leukemia stem cells and blood stem cells
Hematopoietic stem cells from a healthy donor can help patients suffering from acute leukemia.

Computer simulations visualize how DNA is recognized to convert cells into stem cells
Researchers of the Hubrecht Institute (KNAW - The Netherlands) and the Max Planck Institute in Münster (Germany) have revealed how an essential protein helps to activate genomic DNA during the conversion of regular adult human cells into stem cells.

First events in stem cells becoming specialized cells needed for organ development
Cell biologists at the University of Toronto shed light on the very first step stem cells go through to turn into the specialized cells that make up organs.

Surprising research result: All immature cells can develop into stem cells
New sensational study conducted at the University of Copenhagen disproves traditional knowledge of stem cell development.

The development of brain stem cells into new nerve cells and why this can lead to cancer
Stem cells are true Jacks-of-all-trades of our bodies, as they can turn into the many different cell types of all organs.

Healthy blood stem cells have as many DNA mutations as leukemic cells
Researchers from the Princess Máxima Center for Pediatric Oncology have shown that the number of mutations in healthy and leukemic blood stem cells does not differ.

New method grows brain cells from stem cells quickly and efficiently
Researchers at Lund University in Sweden have developed a faster method to generate functional brain cells, called astrocytes, from embryonic stem cells.

NUS researchers confine mature cells to turn them into stem cells
Recent research led by Professor G.V. Shivashankar of the Mechanobiology Institute at the National University of Singapore and the FIRC Institute of Molecular Oncology in Italy, has revealed that mature cells can be reprogrammed into re-deployable stem cells without direct genetic modification -- by confining them to a defined geometric space for an extended period of time.

Researchers develop a new method for turning skin cells into pluripotent stem cells
Researchers at the University of Helsinki, Finland, and Karolinska Institutet, Sweden, have for the first time succeeded in converting human skin cells into pluripotent stem cells by activating the cell's own genes.

Read More: Stem Cells News and Stem Cells Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.