Well-traveled wasps provide hope for vanishing species

November 09, 2009

They may only be 1.5mm in size, but the tiny wasps that pollinate fig trees can travel over 160km in less than 48 hours, according to research from scientists at the University of Leeds. The fig wasps are transporting pollen ten times further than previously recorded for any insect.

The fig wasps travel these distances in search of trees to lay their eggs, which offers hope that trees pollinated by similar creatures have a good chance of surviving if they become isolated through deforestation.

"Fig trees provide very important food for vertebrates," explains Dr Stephen Compton of the University's Faculty of Biological Sciences. "More birds and animals feed on fig trees than on any other plant in the rainforest. Our research shows that trees pollinated by this type of insect should be very resistant to forest fragmentation."

"Fig wasps are weak flyers," added Dr Compton. "They fly up in an air column and are then carried by wind until they sense host figs at which point they drop close to the ground and hunt out the scent of the tree which is specific to them.

"As adult wasps live for just 48 hours, they must have travelled these distances incredibly fast. It took our field scientists and volunteers nearly two weeks to walk 250km and map the fig trees used in the research."

Using a unique mix of field work and genetic tests, the researchers tracked the movement of pollen between trees and used this as the marker for insect movement.

The scientists mapped all the African fig trees (Ficus sycomorus) along 250km of the Ugab River valley in the Namib Desert. Due to the climate, the trees were only able to survive near the river, which made it possible to identify each of the 79 trees in the area individually.

The trees were DNA tested and seedlings grown from their fruit. Genetic tests on the seedlings enabled the researchers to identify which trees had cross-pollinated. As the trees are only pollinated by the fig wasp Ceratosolen arabicus, the scientists were able to map the distances travelled by the insects.

"This is the first research to identify each individual tree, rather than extrapolate the genetic mix from a sample," said Professor Philip Gilmartin, formerly from Leeds and now at the University of Durham. "We were basically paternity testing trees: we knew which tree was the 'mother' and because we already had the DNA results for the other trees, it was easy to identify the 'father'. It meant we were tracking the route of an individual grain of pollen."

The shortest distance recorded for cross-pollination was 14km and the furthest 164km. Trees were not necessarily pollinated by their nearest neighbour, and some pollen came from unidentified trees, indicating that some insects were travelling even longer distances than those recorded.
-end-
The research was part of a PhD studentship carried out by Sophia Ahmed and funded through the Biotechnology and Biological Sciences Research Council (BBSRC) with additional support from the Natural Environment Research Council (NERC). The findings are published this week in the Proceedings of the National Academy of Sciences (PNAS).

University of Leeds

Related Pollen Articles from Brightsurf:

Modern computational tools may open a new era for fossil pollen research
By integrating machine-learning technology with high-resolution imaging, scientists are improving the taxonomic resolution of fossil pollen identifications and greatly enhancing the use of pollen data in ecological and evolutionary research.

Efficient pollen identification
From pollen forecasting, honey analysis and climate-related changes in plant-pollinator interactions, analysing pollen plays an important role in many areas of research.

Scientists shed new light on pollen tube growth in plants
New insight on how an enzyme ensures the correct growth of pollen tubes in flowering plants has been published today in the open-access journal eLife.

Fossil pollen record suggests vulnerability to mass extinction ahead
Reduced resilience of plant biomes in North America could be setting the stage for the kind of mass extinctions not seen since the retreat of glaciers and arrival of humans about 13,000 years ago, cautions a new study published August 20 in the journal Global Change Biology.

Researchers explore pollen fertilization mechanisms
A study showing how pollen tubes grow into flowers to reach the ovule paves the way for the improvement of food crop varieties as well as a deeper understanding of the growth of fungi and neurons.

The mystery of pollen sterility and its reversion in pigeon pea revealed in a new study
The Vienna Metabolomics Centre (VIME), University of Vienna, in collaboration with International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), based in India has made a breakthrough in pigeonpea by resolving the mystery behind fertility-sterility transition in pigeonpea.

Newly identified gene reduces pollen number of plants
Producing less sperm cells can be advantageous in self-fertilizing plants.

'Bee' thankful for the evolution of pollen
Over 80% of the world's flowering plants must reproduce in order to produce new flowers, according to the US Forest Service.

Spring rains are a surprising source of pollen
Spring rains washes away some pollen, but not all. University of Iowa researchers have found tree pollen fragments can remain airborne for hours after a storm.

Nasal biomarkers predict severity of pollen-specific allergy symptoms
It is not only people with allergies, but also a subgroup of people without one that suffer in spring and have nasal problems from contact with pollen.

Read More: Pollen News and Pollen Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.